Mostrar el registro sencillo del ítem
dc.contributor.author | Pisano, Alessandro | es_ES |
dc.contributor.author | Martínez Ballester, Santiago | es_ES |
dc.contributor.author | Corberán Salvador, José Miguel | es_ES |
dc.contributor.author | Hidalgo Mopeán, Fernando | es_ES |
dc.contributor.author | Illán Gómez, Fernando | es_ES |
dc.contributor.author | García Cascales, José Ramón | es_ES |
dc.date.accessioned | 2017-10-03T07:31:20Z | |
dc.date.available | 2017-10-03T07:31:20Z | |
dc.date.issued | 2015-07-04 | |
dc.identifier.issn | 2374-4731 | |
dc.identifier.uri | http://hdl.handle.net/10251/88516 | |
dc.description.abstract | [EN] The selection of suitable correlations for calculating heat transfer coefficients and pressure drop plays a fundamental role in the use of semi-empirical models for the simulation of the performance of a heat exchanger. Therefore, a discussion about the best way for validating a condenser model and choosing the best set of correlations for both the heat transfer coefficients and pressure drop is presented. The studies were performed for both the air and refrigerant side in a round tube and plate fin condenser. A test campaign was specially designed to cover a wide range of key parameters, such as air velocity, condensation temperature, refrigerant mass flow rate, and condenser subcooling. The options for defining the boundary conditions in the model and the accuracy metrics are discussed in detail, allowing the identification of the most suitable correlations. By using this set of correlations, the prediction error is within an error band of +/- 0.4 degrees C for the condensation temperature and +/- 0.6% in terms of capacity. | es_ES |
dc.description.sponsorship | The work of Alessandro Pisano on this project was partially supported by the Ministry for Economy and Finance of Spain, under the Formacion de Personal Investigador (FPI) program. Financial support from the Ministry for Economy and Finance of Spain (project number DPI2011-26771-C02-01) is also gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Science and Technology for the Built Environment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | HORIZONTAL SMOOTH TUBE | es_ES |
dc.subject | FRICTION CHARACTERISTICS | es_ES |
dc.subject | MICROCHANNEL CONDENSERS | es_ES |
dc.subject | PERFORMANCE PREDICTION | es_ES |
dc.subject | HFC REFRIGERANTS | es_ES |
dc.subject | FLOW REGIMES | es_ES |
dc.subject | PART II | es_ES |
dc.subject | EXCHANGERS | es_ES |
dc.subject | SIMULATION | es_ES |
dc.subject | EQUATIONS | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/23744731.2015.1040341 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-26771-C02-01/ES/ESTUDIO DE EVAPORADORES Y CONDENSADORES BASADOS EN TECNOLOGIA DE MINICANALES PARA SU APLICACION EN EQUIPOS DE AIRE ACONDICIONADO, REFRIGERACION Y BOMBA DE CALOR ESTACIONARIOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica | es_ES |
dc.description.bibliographicCitation | Pisano, A.; Martínez Ballester, S.; Corberán Salvador, JM.; Hidalgo Mopeán, F.; Illán Gómez, F.; García Cascales, JR. (2015). A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop. Science and Technology for the Built Environment. 21(5):585-594. https://doi.org/10.1080/23744731.2015.1040341 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1080/23744731.2015.1040341 | es_ES |
dc.description.upvformatpinicio | 585 | es_ES |
dc.description.upvformatpfin | 594 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 307333 | es_ES |
dc.identifier.eissn | 2374-474X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Bensafi, A., Borg, S., & Parent, D. (1997). CYRANO: a computational model for the detailed design of plate-fin-and-tube heat exchangers using pure and mixed refrigerants. International Journal of Refrigeration, 20(3), 218-228. doi:10.1016/s0140-7007(96)00052-7 | es_ES |
dc.description.references | Boissieux, X., Heikal, M. R., & Johns, R. A. (2000). Two-phase heat transfer coefficients of three HFC refrigerants inside a horizontal smooth tube, part II: condensation. International Journal of Refrigeration, 23(5), 345-352. doi:10.1016/s0140-7007(99)00071-7 | es_ES |
dc.description.references | Briggs, A., & Rose, J. W. (1994). Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. International Journal of Heat and Mass Transfer, 37, 457-463. doi:10.1016/0017-9310(94)90045-0 | es_ES |
dc.description.references | Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G. A., & Rossetto, L. (2001). Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. International Journal of Refrigeration, 24(1), 73-87. doi:10.1016/s0140-7007(00)00070-0 | es_ES |
dc.description.references | Chisholm, D. (1973). Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer, 16(2), 347-358. doi:10.1016/0017-9310(73)90063-x | es_ES |
dc.description.references | Hua-Zhong Tang, Ping Cheng, Kun Xu. (2001). NUMERICAL SIMULATIONS OF RESONANT OSCILLATIONS IN A TUBE. Numerical Heat Transfer, Part A: Applications, 40(1), 37-54. doi:10.1080/10407780117498 | es_ES |
dc.description.references | Corberán, J., & Melón, M. G. (1998). Modelling of plate finned tube evaporators and condensers working with R134A. International Journal of Refrigeration, 21(4), 273-284. doi:10.1016/s0140-7007(97)00087-x | es_ES |
dc.description.references | Ding, W. K., Fan, J. F., He, Y. L., Tao, W. Q., Zheng, Y. X., Gao, Y. F., & Song, J. (2011). A general simulation model for performance prediction of plate fin-and-tube heat exchanger with complex circuit configuration. Applied Thermal Engineering, 31(16), 3106-3116. doi:10.1016/j.applthermaleng.2011.01.045 | es_ES |
dc.description.references | Dobson, M. K., & Chato, J. C. (1998). Condensation in Smooth Horizontal Tubes. Journal of Heat Transfer, 120(1), 193-213. doi:10.1115/1.2830043 | es_ES |
dc.description.references | Domansky, P.A. 2003. EVAP-COND, simulation models for finned tube heat exchangers. National Institute of Standards and Technology and Fire Research Laboratory, Gaithersburg, MD, USA. | es_ES |
dc.description.references | García-Cascales, J. R., Vera-García, F., Gonzálvez-Maciá, J., Corberán-Salvador, J. M., Johnson, M. W., & Kohler, G. T. (2010). Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 33(1), 135-147. doi:10.1016/j.ijrefrig.2009.08.013 | es_ES |
dc.description.references | Ge, Y. T., & Cropper, R. (2005). Performance evaluations of air-cooled condensers using pure and mixture refrigerants by four-section lumped modelling methods. Applied Thermal Engineering, 25(10), 1549-1564. doi:10.1016/j.applthermaleng.2004.10.001 | es_ES |
dc.description.references | Jiang, H., Aute, V., & Radermacher, R. (2006). CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers. International Journal of Refrigeration, 29(4), 601-610. doi:10.1016/j.ijrefrig.2005.09.019 | es_ES |
dc.description.references | Liu, J., Wei, W., Ding, G., Zhang, C., Fukaya, M., Wang, K., & Inagaki, T. (2004). A general steady state mathematical model for fin-and-tube heat exchanger based on graph theory. International Journal of Refrigeration, 27(8), 965-973. doi:10.1016/j.ijrefrig.2004.06.008 | es_ES |
dc.description.references | Martínez-Ballester, S., Corberán, J.-M., & Gonzálvez-Maciá, J. (2013). Numerical model for microchannel condensers and gas coolers: Part I – Model description and validation. International Journal of Refrigeration, 36(1), 173-190. doi:10.1016/j.ijrefrig.2012.08.023 | es_ES |
dc.description.references | Shao, L.-L., Yang, L., Zhang, C.-L., & Gu, B. (2009). Numerical modeling of serpentine microchannel condensers. International Journal of Refrigeration, 32(6), 1162-1172. doi:10.1016/j.ijrefrig.2009.02.007 | es_ES |
dc.description.references | Shah, M. M. (1979). A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 22(4), 547-556. doi:10.1016/0017-9310(79)90058-9 | es_ES |
dc.description.references | Soliman, M., Schuster, J. R., & Berenson, P. J. (1968). A General Heat Transfer Correlation for Annular Flow Condensation. Journal of Heat Transfer, 90(2), 267-274. doi:10.1115/1.3597497 | es_ES |
dc.description.references | Thome, J. R., El Hajal, J., & Cavallini, A. (2003). Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. International Journal of Heat and Mass Transfer, 46(18), 3365-3387. doi:10.1016/s0017-9310(03)00140-6 | es_ES |
dc.description.references | Tandon, T. ., Varma, H. ., & Gupta, C. . (1995). Heat transfer during forced convection condensation inside horizontal tube. International Journal of Refrigeration, 18(3), 210-214. doi:10.1016/0140-7007(95)90316-r | es_ES |
dc.description.references | Traviss, D.P., A.B. Baron, and W.M. Rohsenow. 1971. Forced convection condensation inside tube: A heat transfer equation for condenser design. Report No. DSR 72591-74, American Society of Heating. | es_ES |
dc.description.references | Vardhan, A., & Dhar, P. . (1998). A new procedure for performance prediction of air conditioning coils. International Journal of Refrigeration, 21(1), 77-83. doi:10.1016/s0140-7007(97)00020-0 | es_ES |
dc.description.references | Vera-García, F., García-Cascales, J. R., Corberán-Salvador, J. M., Gonzálvez-Maciá, J., & Fuentes-Díaz, D. (2007). Assessment of condensation heat transfer correlations in the modelling of fin and tube heat exchangers. International Journal of Refrigeration, 30(6), 1018-1028. doi:10.1016/j.ijrefrig.2007.01.005 | es_ES |
dc.description.references | Wang, C.-C., & Chi, K.-Y. (2000). Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data. International Journal of Heat and Mass Transfer, 43(15), 2681-2691. doi:10.1016/s0017-9310(99)00332-4 | es_ES |
dc.description.references | Zhao, L.-X., & Zhang, C.-L. (2010). Fin-and-tube condenser performance evaluation using neural networks. International Journal of Refrigeration, 33(3), 625-634. doi:10.1016/j.ijrefrig.2009.11.008 | es_ES |