- -

A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pisano, Alessandro es_ES
dc.contributor.author Martínez Ballester, Santiago es_ES
dc.contributor.author Corberán Salvador, José Miguel es_ES
dc.contributor.author Hidalgo Mopeán, Fernando es_ES
dc.contributor.author Illán Gómez, Fernando es_ES
dc.contributor.author García Cascales, José Ramón es_ES
dc.date.accessioned 2017-10-03T07:31:20Z
dc.date.available 2017-10-03T07:31:20Z
dc.date.issued 2015-07-04
dc.identifier.issn 2374-4731
dc.identifier.uri http://hdl.handle.net/10251/88516
dc.description.abstract [EN] The selection of suitable correlations for calculating heat transfer coefficients and pressure drop plays a fundamental role in the use of semi-empirical models for the simulation of the performance of a heat exchanger. Therefore, a discussion about the best way for validating a condenser model and choosing the best set of correlations for both the heat transfer coefficients and pressure drop is presented. The studies were performed for both the air and refrigerant side in a round tube and plate fin condenser. A test campaign was specially designed to cover a wide range of key parameters, such as air velocity, condensation temperature, refrigerant mass flow rate, and condenser subcooling. The options for defining the boundary conditions in the model and the accuracy metrics are discussed in detail, allowing the identification of the most suitable correlations. By using this set of correlations, the prediction error is within an error band of +/- 0.4 degrees C for the condensation temperature and +/- 0.6% in terms of capacity. es_ES
dc.description.sponsorship The work of Alessandro Pisano on this project was partially supported by the Ministry for Economy and Finance of Spain, under the Formacion de Personal Investigador (FPI) program. Financial support from the Ministry for Economy and Finance of Spain (project number DPI2011-26771-C02-01) is also gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Science and Technology for the Built Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HORIZONTAL SMOOTH TUBE es_ES
dc.subject FRICTION CHARACTERISTICS es_ES
dc.subject MICROCHANNEL CONDENSERS es_ES
dc.subject PERFORMANCE PREDICTION es_ES
dc.subject HFC REFRIGERANTS es_ES
dc.subject FLOW REGIMES es_ES
dc.subject PART II es_ES
dc.subject EXCHANGERS es_ES
dc.subject SIMULATION es_ES
dc.subject EQUATIONS es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/23744731.2015.1040341
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-26771-C02-01/ES/ESTUDIO DE EVAPORADORES Y CONDENSADORES BASADOS EN TECNOLOGIA DE MINICANALES PARA SU APLICACION EN EQUIPOS DE AIRE ACONDICIONADO, REFRIGERACION Y BOMBA DE CALOR ESTACIONARIOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica es_ES
dc.description.bibliographicCitation Pisano, A.; Martínez Ballester, S.; Corberán Salvador, JM.; Hidalgo Mopeán, F.; Illán Gómez, F.; García Cascales, JR. (2015). A discussion about the methodology for validating a model of a finned-tube condenser considering different correlations for the heat transfer coefficients and pressure drop. Science and Technology for the Built Environment. 21(5):585-594. https://doi.org/10.1080/23744731.2015.1040341 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1080/23744731.2015.1040341 es_ES
dc.description.upvformatpinicio 585 es_ES
dc.description.upvformatpfin 594 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 307333 es_ES
dc.identifier.eissn 2374-474X
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bensafi, A., Borg, S., & Parent, D. (1997). CYRANO: a computational model for the detailed design of plate-fin-and-tube heat exchangers using pure and mixed refrigerants. International Journal of Refrigeration, 20(3), 218-228. doi:10.1016/s0140-7007(96)00052-7 es_ES
dc.description.references Boissieux, X., Heikal, M. R., & Johns, R. A. (2000). Two-phase heat transfer coefficients of three HFC refrigerants inside a horizontal smooth tube, part II: condensation. International Journal of Refrigeration, 23(5), 345-352. doi:10.1016/s0140-7007(99)00071-7 es_ES
dc.description.references Briggs, A., & Rose, J. W. (1994). Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. International Journal of Heat and Mass Transfer, 37, 457-463. doi:10.1016/0017-9310(94)90045-0 es_ES
dc.description.references Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G. A., & Rossetto, L. (2001). Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube. International Journal of Refrigeration, 24(1), 73-87. doi:10.1016/s0140-7007(00)00070-0 es_ES
dc.description.references Chisholm, D. (1973). Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer, 16(2), 347-358. doi:10.1016/0017-9310(73)90063-x es_ES
dc.description.references Hua-Zhong Tang, Ping Cheng, Kun Xu. (2001). NUMERICAL SIMULATIONS OF RESONANT OSCILLATIONS IN A TUBE. Numerical Heat Transfer, Part A: Applications, 40(1), 37-54. doi:10.1080/10407780117498 es_ES
dc.description.references Corberán, J., & Melón, M. G. (1998). Modelling of plate finned tube evaporators and condensers working with R134A. International Journal of Refrigeration, 21(4), 273-284. doi:10.1016/s0140-7007(97)00087-x es_ES
dc.description.references Ding, W. K., Fan, J. F., He, Y. L., Tao, W. Q., Zheng, Y. X., Gao, Y. F., & Song, J. (2011). A general simulation model for performance prediction of plate fin-and-tube heat exchanger with complex circuit configuration. Applied Thermal Engineering, 31(16), 3106-3116. doi:10.1016/j.applthermaleng.2011.01.045 es_ES
dc.description.references Dobson, M. K., & Chato, J. C. (1998). Condensation in Smooth Horizontal Tubes. Journal of Heat Transfer, 120(1), 193-213. doi:10.1115/1.2830043 es_ES
dc.description.references Domansky, P.A. 2003. EVAP-COND, simulation models for finned tube heat exchangers. National Institute of Standards and Technology and Fire Research Laboratory, Gaithersburg, MD, USA. es_ES
dc.description.references García-Cascales, J. R., Vera-García, F., Gonzálvez-Maciá, J., Corberán-Salvador, J. M., Johnson, M. W., & Kohler, G. T. (2010). Compact heat exchangers modeling: Condensation. International Journal of Refrigeration, 33(1), 135-147. doi:10.1016/j.ijrefrig.2009.08.013 es_ES
dc.description.references Ge, Y. T., & Cropper, R. (2005). Performance evaluations of air-cooled condensers using pure and mixture refrigerants by four-section lumped modelling methods. Applied Thermal Engineering, 25(10), 1549-1564. doi:10.1016/j.applthermaleng.2004.10.001 es_ES
dc.description.references Jiang, H., Aute, V., & Radermacher, R. (2006). CoilDesigner: a general-purpose simulation and design tool for air-to-refrigerant heat exchangers. International Journal of Refrigeration, 29(4), 601-610. doi:10.1016/j.ijrefrig.2005.09.019 es_ES
dc.description.references Liu, J., Wei, W., Ding, G., Zhang, C., Fukaya, M., Wang, K., & Inagaki, T. (2004). A general steady state mathematical model for fin-and-tube heat exchanger based on graph theory. International Journal of Refrigeration, 27(8), 965-973. doi:10.1016/j.ijrefrig.2004.06.008 es_ES
dc.description.references Martínez-Ballester, S., Corberán, J.-M., & Gonzálvez-Maciá, J. (2013). Numerical model for microchannel condensers and gas coolers: Part I – Model description and validation. International Journal of Refrigeration, 36(1), 173-190. doi:10.1016/j.ijrefrig.2012.08.023 es_ES
dc.description.references Shao, L.-L., Yang, L., Zhang, C.-L., & Gu, B. (2009). Numerical modeling of serpentine microchannel condensers. International Journal of Refrigeration, 32(6), 1162-1172. doi:10.1016/j.ijrefrig.2009.02.007 es_ES
dc.description.references Shah, M. M. (1979). A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 22(4), 547-556. doi:10.1016/0017-9310(79)90058-9 es_ES
dc.description.references Soliman, M., Schuster, J. R., & Berenson, P. J. (1968). A General Heat Transfer Correlation for Annular Flow Condensation. Journal of Heat Transfer, 90(2), 267-274. doi:10.1115/1.3597497 es_ES
dc.description.references Thome, J. R., El Hajal, J., & Cavallini, A. (2003). Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. International Journal of Heat and Mass Transfer, 46(18), 3365-3387. doi:10.1016/s0017-9310(03)00140-6 es_ES
dc.description.references Tandon, T. ., Varma, H. ., & Gupta, C. . (1995). Heat transfer during forced convection condensation inside horizontal tube. International Journal of Refrigeration, 18(3), 210-214. doi:10.1016/0140-7007(95)90316-r es_ES
dc.description.references Traviss, D.P., A.B. Baron, and W.M. Rohsenow. 1971. Forced convection condensation inside tube: A heat transfer equation for condenser design. Report No. DSR 72591-74, American Society of Heating. es_ES
dc.description.references Vardhan, A., & Dhar, P. . (1998). A new procedure for performance prediction of air conditioning coils. International Journal of Refrigeration, 21(1), 77-83. doi:10.1016/s0140-7007(97)00020-0 es_ES
dc.description.references Vera-García, F., García-Cascales, J. R., Corberán-Salvador, J. M., Gonzálvez-Maciá, J., & Fuentes-Díaz, D. (2007). Assessment of condensation heat transfer correlations in the modelling of fin and tube heat exchangers. International Journal of Refrigeration, 30(6), 1018-1028. doi:10.1016/j.ijrefrig.2007.01.005 es_ES
dc.description.references Wang, C.-C., & Chi, K.-Y. (2000). Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, part I: new experimental data. International Journal of Heat and Mass Transfer, 43(15), 2681-2691. doi:10.1016/s0017-9310(99)00332-4 es_ES
dc.description.references Zhao, L.-X., & Zhang, C.-L. (2010). Fin-and-tube condenser performance evaluation using neural networks. International Journal of Refrigeration, 33(3), 625-634. doi:10.1016/j.ijrefrig.2009.11.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem