- -

Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids

Mostrar el registro completo del ítem

Vizuete, M.; Gomez-Escalonilla, MJ.; Barrejon, M.; Fierro, JL.; Zhang, M.; Yudasaka, M.; Iijima, S.... (2016). Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics. 18(3):1828-1837. https://doi.org/10.1039/c5cp05734e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/88518

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids
Autor: Vizuete, Maria Gomez-Escalonilla, Maria J. Barrejon, M Fierro, Jose Luis Zhang, Minfang Yudasaka, Masako Iijima, Sumio Atienzar Corvillo, Pedro Enrique García Gómez, Hermenegildo Langa, Fernando
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The covalent coupling between oligo(thienylenevinylenes) (nTVs) and carbon nanohorns (CNHs) has been investigated. The resulting nanohybrids have been characterized by a combination of several techniques, including ...[+]
Palabras clave: ELECTRON-TRANSFER PROCESSES , EFFICIENT MOLECULAR WIRES , THIENYLENEVINYLENE OLIGOMERS , CHEMICAL-MODIFICATION , RAMAN MODES , SOLAR-CELLS , NANOTUBES , FUNCTIONALIZATION , ENERGY , PORPHYRIN
Derechos de uso: Cerrado
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 ) (eissn: 1463-9084 )
DOI: 10.1039/c5cp05734e
Editorial:
Royal Society of Chemistry
Versión del editor: http://doi.org/10.1039/c5cp05734e
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2011-26455/ES/SINTESIS, CARACTERIZACION Y AUTOORGANIZACION DE SISTEMAS ELECTROACTIVOS PARA LA CONSTRUCCION DE CELULAS SOLARES ORGANICAS/
...[+]
info:eu-repo/grantAgreement/MICINN//CTQ2011-26455/ES/SINTESIS, CARACTERIZACION Y AUTOORGANIZACION DE SISTEMAS ELECTROACTIVOS PARA LA CONSTRUCCION DE CELULAS SOLARES ORGANICAS/
info:eu-repo/grantAgreement/JCCM//PEII-2014-014-P/
info:eu-repo/grantAgreement/GVA//GV%2F2014%2F101/
info:eu-repo/grantAgreement/MINECO//RYC-2012-10702/ES/RYC-2012-10702/
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/MINECO//CTQ2013-48252-P/ES/NANOESTRUCTURAS DE CARBONO Y SISTEMAS PI-CONJUGADOS PARA APLICACIONES EN ELECTRONICA MOLECULAR Y FOTOVOLTAICA/
[-]
Agradecimientos:
Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2011-26455, CTQ201232315 and CTQ2013-48252-P) and Junta de Comunidades de Castilla-La Mancha (PEII-2014-014-P) is gratefully ...[+]
Tipo: Artículo

References

Aich, N., Plazas-Tuttle, J., Lead, J. R., & Saleh, N. B. (2014). A critical review of nanohybrids: synthesis, applications and environmental implications. Environmental Chemistry, 11(6), 609. doi:10.1071/en14127

De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453

Schnorr, J. M., & Swager, T. M. (2011). Emerging Applications of Carbon Nanotubes†. Chemistry of Materials, 23(3), 646-657. doi:10.1021/cm102406h [+]
Aich, N., Plazas-Tuttle, J., Lead, J. R., & Saleh, N. B. (2014). A critical review of nanohybrids: synthesis, applications and environmental implications. Environmental Chemistry, 11(6), 609. doi:10.1071/en14127

De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453

Schnorr, J. M., & Swager, T. M. (2011). Emerging Applications of Carbon Nanotubes†. Chemistry of Materials, 23(3), 646-657. doi:10.1021/cm102406h

Karousis, N., Tagmatarchis, N., & Tasis, D. (2010). Current Progress on the Chemical Modification of Carbon Nanotubes. Chemical Reviews, 110(9), 5366-5397. doi:10.1021/cr100018g

Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications, ed. D. M. Guldi and N. Martín, Wiley-VCH Verlag GmbH & Co. Kga, 2010

Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 115(11), 4744-4822. doi:10.1021/cr500304f

Bottari, G., de la Torre, G., & Torres, T. (2015). Phthalocyanine–Nanocarbon Ensembles: From Discrete Molecular and Supramolecular Systems to Hybrid Nanomaterials. Accounts of Chemical Research, 48(4), 900-910. doi:10.1021/ar5004384

Hasobe, T. (2013). Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion. The Journal of Physical Chemistry Letters, 4(11), 1771-1780. doi:10.1021/jz4005152

Roncali, J. (2000). Oligothienylenevinylenes as a New Class of Multinanometer Linear π-Conjugated Systems for Micro- and Nanoelectronics. Accounts of Chemical Research, 33(3), 147-156. doi:10.1021/ar990023m

Jestin, I., Frère, P., Mercier, N., Levillain, E., Stievenard, D., & Roncali, J. (1998). Synthesis and Characterization of the Electronic and Electrochemical Properties of Thienylenevinylene Oligomers with Multinanometer Dimensions. Journal of the American Chemical Society, 120(32), 8150-8158. doi:10.1021/ja980603z

Oswald, F., Shafiqul Islam, D.-M., El-Khouly, M. E., Araki, Y., Caballero, R., de la Cruz, P., … Langa, F. (2014). Photoinduced electron transfer of zinc porphyrin–oligo(thienylenevinylene)–fullerene[60] triads; thienylenevinylenes as efficient molecular wires. Phys. Chem. Chem. Phys., 16(6), 2443-2451. doi:10.1039/c3cp54280g

Oswald, F., Islam, D.-M. S., Araki, Y., Troiani, V., de la Cruz, P., Moreno, A., … Langa, F. (2007). Synthesis and Photoinduced Intramolecular Processes of Fulleropyrrolidine–Oligothienylenevinylene–Ferrocene Triads. Chemistry - A European Journal, 13(14), 3924-3933. doi:10.1002/chem.200601889

Oswald, F., Islam, D.-M. S., Araki, Y., Troiani, V., Caballero, R., Cruz, P. de la, … Langa, F. (2007). High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. Chemical Communications, (43), 4498. doi:10.1039/b711194k

Apperloo, J. J., Martineau, C., van Hal, P. A., Roncali, J., & Janssen, R. A. J. (2002). Intra- and Intermolecular Photoinduced Energy and Electron Transfer between Oligothienylenevinylenes andN-Methylfulleropyrrolidine. The Journal of Physical Chemistry A, 106(1), 21-31. doi:10.1021/jp012936f

Liu, Y., Zhou, J., Zhang, X., Liu, Z., Wan, X., Tian, J., … Chen, Y. (2009). Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon, 47(13), 3113-3121. doi:10.1016/j.carbon.2009.07.027

Jestin, I., Frère, P., Blanchard, P., & Roncali, J. (1998). Extended Thienylenevinylene Oligomers as Highly Efficient Molecular Wires. Angewandte Chemie International Edition, 37(7), 942-945. doi:10.1002/(sici)1521-3773(19980420)37:7<942::aid-anie942>3.0.co;2-8

Zhu, S., & Xu, G. (2010). Single-walled carbon nanohorns and their applications. Nanoscale, 2(12), 2538. doi:10.1039/c0nr00387e

Pramoda, K., Moses, K., Ikram, M., Vasu, K., Govindaraj, A., & Rao, C. N. R. (2013). Synthesis, Characterization and Properties of Single-Walled Carbon Nanohorns. Journal of Cluster Science, 25(1), 173-188. doi:10.1007/s10876-013-0652-6

G. Pagona and N.Tagmatarchis, in Advances in Carbon Nanomaterials: Science and Applications: Carbon Nanohorns Chemical Functionalization, ed. N. Tagmatarchis, Pan Stanford Publishing, 1st edn, 2012, ch. 6, pp. 239–268

Cataldo, S., Salice, P., Menna, E., & Pignataro, B. (2012). Carbon nanotubes and organic solar cells. Energy Environ. Sci., 5(3), 5919-5940. doi:10.1039/c1ee02276h

Pagona, G., Zervaki, G. E., Sandanayaka, A. S. D., Ito, O., Charalambidis, G., Hasobe, T., … Tagmatarchis, N. (2012). Carbon Nanohorn–Porphyrin Dimer Hybrid Material for Enhancing Light-Energy Conversion. The Journal of Physical Chemistry C, 116(17), 9439-9449. doi:10.1021/jp302178q

Costa, R. D., Feihl, S., Kahnt, A., Gambhir, S., Officer, D. L., Wallace, G. G., … Guldi, D. M. (2013). Carbon Nanohorns as Integrative Materials for Efficient Dye-Sensitized Solar Cells. Advanced Materials, 25(45), 6513-6518. doi:10.1002/adma.201301527

Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y., & Wei, F. (2013). The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small, 9(8), 1237-1265. doi:10.1002/smll.201203252

Lodermeyer, F., Costa, R. D., Casillas, R., Kohler, F. T. U., Wasserscheid, P., Prato, M., & Guldi, D. M. (2015). Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy & Environmental Science, 8(1), 241-246. doi:10.1039/c4ee02037e

Vizuete, M., Gómez-Escalonilla, M. J., Fierro, J. L. G., Sandanayaka, A. S. D., Hasobe, T., Yudasaka, M., … Langa, F. (2010). A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electron-Transfer Processes. Chemistry - A European Journal, 16(35), 10752-10763. doi:10.1002/chem.201000299

Vizuete, M., Gómez-Escalonilla, M. J., Fierro, J. L. G., Yudasaka, M., Iijima, S., Vartanian, M., … Langa, F. (2011). A soluble hybrid material combining carbon nanohorns and C60. Chemical Communications, 47(48), 12771. doi:10.1039/c1cc15446j

Pagona, G., Katerinopoulos, H. E., & Tagmatarchis, N. (2011). Synthesis, characterization, and photophysical properties of a carbon nanohorn–coumarin hybrid material. Chemical Physics Letters, 516(1-3), 76-81. doi:10.1016/j.cplett.2011.09.055

Pagona, G., Rotas, G., Petsalakis, I. D., Theodorakopoulos, G., Fan, J., Maigné, A., … Tagmatarchis, N. (2007). Soluble Functionalized Carbon Nanohorns. Journal of Nanoscience and Nanotechnology, 7(10), 3468-3472. doi:10.1166/jnn.2007.821

Pagona, G., Karousis, N., & Tagmatarchis, N. (2008). Aryl diazonium functionalization of carbon nanohorns. Carbon, 46(4), 604-610. doi:10.1016/j.carbon.2008.01.007

Urbani, M., Pelado, B., de la Cruz, P., Yamanaka, K., Ito, O., & Langa, F. (2011). Synthesis and Photoinduced Energy‐ and Electron‐Transfer Processes of C 60 –Oligothienylenevinylene–C 70 Dumbbell Compounds. Chemistry – A European Journal, 17(19), 5432-5444. doi:10.1002/chem.201002318

Cioffi, C., Campidelli, S., Brunetti, F. G., Meneghetti, M., & Prato, M. (2006). Functionalisation of carbon nanohorns. Chemical Communications, (20), 2129. doi:10.1039/b601176d

Utsumi, S., Honda, H., Hattori, Y., Kanoh, H., Takahashi, K., Sakai, H., … Kaneko, K. (2007). Direct Evidence on C−C Single Bonding in Single-Wall Carbon Nanohorn Aggregates. The Journal of Physical Chemistry C, 111(15), 5572-5575. doi:10.1021/jp071273k

Fantini, C., Pimenta, M. A., & Strano, M. S. (2008). Two-Phonon Combination Raman Modes in Covalently Functionalized Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C, 112(34), 13150-13155. doi:10.1021/jp803855z

Voggu, R., Rout, C. S., Franklin, A. D., Fisher, T. S., & Rao, C. N. R. (2008). Extraordinary Sensitivity of the Electronic Structure and Properties of Single-Walled Carbon Nanotubes to Molecular Charge-Transfer. The Journal of Physical Chemistry C, 112(34), 13053-13056. doi:10.1021/jp805136e

Do Nascimento, G. M., Hou, T., Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., … Dresselhaus, M. S. (2011). Behavior of the high frequency Raman modes of double-wall carbon nanotubes after doping with bromine or iodine vapors. Carbon, 49(11), 3585-3596. doi:10.1016/j.carbon.2011.04.061

Mevellec, J.-Y., Bergeret, C., Cousseau, J., Buisson, J.-P., Ewels, C. P., & Lefrant, S. (2011). Tuning the Raman Resonance Behavior of Single-Walled Carbon Nanotubes via Covalent Functionalization. Journal of the American Chemical Society, 133(42), 16938-16946. doi:10.1021/ja2062677

Herrero-Latorre, C., Álvarez-Méndez, J., Barciela-García, J., García-Martín, S., & Peña-Crecente, R. M. (2015). Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Analytica Chimica Acta, 853, 77-94. doi:10.1016/j.aca.2014.10.008

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Bekyarova, E., Itkis, M. E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W. A., & Haddon, R. C. (2009). Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups. Journal of the American Chemical Society, 131(4), 1336-1337. doi:10.1021/ja8057327

Barrejón, M., Pla, S., Berlanga, I., Gómez-Escalonilla, M. J., Martín-Gomis, L., Fierro, J. L. G., … Langa, F. (2015). Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 3(19), 4960-4969. doi:10.1039/c5tc00425j

Criado, A., Vizuete, M., Gómez-Escalonilla, M. J., García-Rodriguez, S., Fierro, J. L. G., Cobas, A., … Langa, F. (2013). Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon, 63, 140-148. doi:10.1016/j.carbon.2013.06.064

Gómez-Escalonilla, M. J., Atienzar, P., Garcia Fierro, J. L., García, H., & Langa, F. (2008). Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 18(13), 1592. doi:10.1039/b717011d

Del Canto, E., Flavin, K., Movia, D., Navio, C., Bittencourt, C., & Giordani, S. (2011). Critical Investigation of Defect Site Functionalization on Single-Walled Carbon Nanotubes. Chemistry of Materials, 23(1), 67-74. doi:10.1021/cm101978m

Giordani, S., Colomer, J.-F., Cattaruzza, F., Alfonsi, J., Meneghetti, M., Prato, M., & Bonifazi, D. (2009). Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon, 47(3), 578-588. doi:10.1016/j.carbon.2008.10.036

Hahlin, M., Johansson, E. M. J., Plogmaker, S., Odelius, M., Hagberg, D. P., Sun, L., … Rensmo, H. (2010). Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Physical Chemistry Chemical Physics, 12(7), 1507. doi:10.1039/b913548k

Kamat, S. V., Yadav, J. B., Puri, V., Puri, R. K., & Joo, O. S. (2011). Characterization of poly (3-methyl thiophene) thin films prepared by modified chemical bath deposition. Applied Surface Science, 258(1), 482-488. doi:10.1016/j.apsusc.2011.08.084

Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211-225. doi:10.1002/sia.740030506

Cuendet, P., Rao, K. K., Grätzel, M., & Hall, D. O. (1986). Light induced H2 evolution in a hydrogenase-TiO2 particle system by direct electron transfer or via Rhodium complexes. Biochimie, 68(1), 217-221. doi:10.1016/s0300-9084(86)81086-0

Soldat, J., Marschall, R., & Wark, M. (2014). Improved overall water splitting with barium tantalate mixed oxide composites. Chem. Sci., 5(10), 3746-3752. doi:10.1039/c4sc01127a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem