- -

Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vizuete, Maria es_ES
dc.contributor.author Gomez-Escalonilla, Maria J. es_ES
dc.contributor.author Barrejon, M es_ES
dc.contributor.author Fierro, Jose Luis es_ES
dc.contributor.author Zhang, Minfang es_ES
dc.contributor.author Yudasaka, Masako es_ES
dc.contributor.author Iijima, Sumio es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Langa, Fernando es_ES
dc.date.accessioned 2017-10-03T07:33:56Z
dc.date.available 2017-10-03T07:33:56Z
dc.date.issued 2016-01-21
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/88518
dc.description.abstract [EN] The covalent coupling between oligo(thienylenevinylenes) (nTVs) and carbon nanohorns (CNHs) has been investigated. The resulting nanohybrids have been characterized by a combination of several techniques, including thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. The photophysical properties of the new hybrids were investigated by steady-state and time-resolved spectroscopic techniques. A transient signal characterized by two kinetic regimes, one short decay within 0.5 mu s corresponding to around 80% of the total signal and another much longer-lived decay of 10 ms, has been detected. The transient absorption spectra are characterized by a continuous absorption that increases in intensity towards shorter wavelengths, with a maximum at 430 nm. These transient signals have been assigned to the chargeseparated state delocalized on CNHs based on the quenching behavior and by comparison with the photophysical properties of nTV in the absence and presence of quenchers. The photophysical behavior of covalent nTV-CNH conjugates with microsecond transients due to electrons and holes on CNHs contrasts with the absence of any transient for analogous nTV-C-60 conjugates, for which charge separation was not observed at timescales longer than nanoseconds. The photochemical behavior of CNHs is believed to derive from the amphoteric (electron donor and acceptor) properties of CNHs and from the larger number of carbon atoms (efficient delocalization) in CNHs compared with C-60. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2011-26455, CTQ201232315 and CTQ2013-48252-P) and Junta de Comunidades de Castilla-La Mancha (PEII-2014-014-P) is gratefully acknowledged. P. A. also thanks the Spanish Ministry of Science and Innovation for a Ramon y Cajal research associate contract (RYC-2012-10702) and the Generalitat Valenciana for the grant GV-2014/101. M. B. thanks the MINECO for a doctoral FPI grant. We also acknowledge M. C. Cuquerella for performing the femtosecond spectroscopy measurements.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject ELECTRON-TRANSFER PROCESSES es_ES
dc.subject EFFICIENT MOLECULAR WIRES es_ES
dc.subject THIENYLENEVINYLENE OLIGOMERS es_ES
dc.subject CHEMICAL-MODIFICATION es_ES
dc.subject RAMAN MODES es_ES
dc.subject SOLAR-CELLS es_ES
dc.subject NANOTUBES es_ES
dc.subject FUNCTIONALIZATION es_ES
dc.subject ENERGY es_ES
dc.subject PORPHYRIN es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5cp05734e
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-26455/ES/SINTESIS, CARACTERIZACION Y AUTOORGANIZACION DE SISTEMAS ELECTROACTIVOS PARA LA CONSTRUCCION DE CELULAS SOLARES ORGANICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PEII-2014-014-P/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2014%2F101/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2012-10702/ES/RYC-2012-10702/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-48252-P/ES/NANOESTRUCTURAS DE CARBONO Y SISTEMAS PI-CONJUGADOS PARA APLICACIONES EN ELECTRONICA MOLECULAR Y FOTOVOLTAICA/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Vizuete, M.; Gomez-Escalonilla, MJ.; Barrejon, M.; Fierro, JL.; Zhang, M.; Yudasaka, M.; Iijima, S.... (2016). Synthesis, characterization and photoinduced charge separation of carbon nanohorn-oligothienylenevinylene hybrids. Physical Chemistry Chemical Physics. 18(3):1828-1837. https://doi.org/10.1039/c5cp05734e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c5cp05734e es_ES
dc.description.upvformatpinicio 1828 es_ES
dc.description.upvformatpfin 1837 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 328564 es_ES
dc.identifier.eissn 1463-9084
dc.identifier.pmid 26678457
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Aich, N., Plazas-Tuttle, J., Lead, J. R., & Saleh, N. B. (2014). A critical review of nanohybrids: synthesis, applications and environmental implications. Environmental Chemistry, 11(6), 609. doi:10.1071/en14127 es_ES
dc.description.references De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. doi:10.1126/science.1222453 es_ES
dc.description.references Schnorr, J. M., & Swager, T. M. (2011). Emerging Applications of Carbon Nanotubes†. Chemistry of Materials, 23(3), 646-657. doi:10.1021/cm102406h es_ES
dc.description.references Karousis, N., Tagmatarchis, N., & Tasis, D. (2010). Current Progress on the Chemical Modification of Carbon Nanotubes. Chemical Reviews, 110(9), 5366-5397. doi:10.1021/cr100018g es_ES
dc.description.references Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications, ed. D. M. Guldi and N. Martín, Wiley-VCH Verlag GmbH & Co. Kga, 2010 es_ES
dc.description.references Georgakilas, V., Perman, J. A., Tucek, J., & Zboril, R. (2015). Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 115(11), 4744-4822. doi:10.1021/cr500304f es_ES
dc.description.references Bottari, G., de la Torre, G., & Torres, T. (2015). Phthalocyanine–Nanocarbon Ensembles: From Discrete Molecular and Supramolecular Systems to Hybrid Nanomaterials. Accounts of Chemical Research, 48(4), 900-910. doi:10.1021/ar5004384 es_ES
dc.description.references Hasobe, T. (2013). Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion. The Journal of Physical Chemistry Letters, 4(11), 1771-1780. doi:10.1021/jz4005152 es_ES
dc.description.references Roncali, J. (2000). Oligothienylenevinylenes as a New Class of Multinanometer Linear π-Conjugated Systems for Micro- and Nanoelectronics. Accounts of Chemical Research, 33(3), 147-156. doi:10.1021/ar990023m es_ES
dc.description.references Jestin, I., Frère, P., Mercier, N., Levillain, E., Stievenard, D., & Roncali, J. (1998). Synthesis and Characterization of the Electronic and Electrochemical Properties of Thienylenevinylene Oligomers with Multinanometer Dimensions. Journal of the American Chemical Society, 120(32), 8150-8158. doi:10.1021/ja980603z es_ES
dc.description.references Oswald, F., Shafiqul Islam, D.-M., El-Khouly, M. E., Araki, Y., Caballero, R., de la Cruz, P., … Langa, F. (2014). Photoinduced electron transfer of zinc porphyrin–oligo(thienylenevinylene)–fullerene[60] triads; thienylenevinylenes as efficient molecular wires. Phys. Chem. Chem. Phys., 16(6), 2443-2451. doi:10.1039/c3cp54280g es_ES
dc.description.references Oswald, F., Islam, D.-M. S., Araki, Y., Troiani, V., de la Cruz, P., Moreno, A., … Langa, F. (2007). Synthesis and Photoinduced Intramolecular Processes of Fulleropyrrolidine–Oligothienylenevinylene–Ferrocene Triads. Chemistry - A European Journal, 13(14), 3924-3933. doi:10.1002/chem.200601889 es_ES
dc.description.references Oswald, F., Islam, D.-M. S., Araki, Y., Troiani, V., Caballero, R., Cruz, P. de la, … Langa, F. (2007). High effectiveness of oligothienylenevinylene as molecular wires in Zn-porphyrin and C60 connected systems. Chemical Communications, (43), 4498. doi:10.1039/b711194k es_ES
dc.description.references Apperloo, J. J., Martineau, C., van Hal, P. A., Roncali, J., & Janssen, R. A. J. (2002). Intra- and Intermolecular Photoinduced Energy and Electron Transfer between Oligothienylenevinylenes andN-Methylfulleropyrrolidine. The Journal of Physical Chemistry A, 106(1), 21-31. doi:10.1021/jp012936f es_ES
dc.description.references Liu, Y., Zhou, J., Zhang, X., Liu, Z., Wan, X., Tian, J., … Chen, Y. (2009). Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon, 47(13), 3113-3121. doi:10.1016/j.carbon.2009.07.027 es_ES
dc.description.references Jestin, I., Frère, P., Blanchard, P., & Roncali, J. (1998). Extended Thienylenevinylene Oligomers as Highly Efficient Molecular Wires. Angewandte Chemie International Edition, 37(7), 942-945. doi:10.1002/(sici)1521-3773(19980420)37:7<942::aid-anie942>3.0.co;2-8 es_ES
dc.description.references Zhu, S., & Xu, G. (2010). Single-walled carbon nanohorns and their applications. Nanoscale, 2(12), 2538. doi:10.1039/c0nr00387e es_ES
dc.description.references Pramoda, K., Moses, K., Ikram, M., Vasu, K., Govindaraj, A., & Rao, C. N. R. (2013). Synthesis, Characterization and Properties of Single-Walled Carbon Nanohorns. Journal of Cluster Science, 25(1), 173-188. doi:10.1007/s10876-013-0652-6 es_ES
dc.description.references G. Pagona and N.Tagmatarchis, in Advances in Carbon Nanomaterials: Science and Applications: Carbon Nanohorns Chemical Functionalization, ed. N. Tagmatarchis, Pan Stanford Publishing, 1st edn, 2012, ch. 6, pp. 239–268 es_ES
dc.description.references Cataldo, S., Salice, P., Menna, E., & Pignataro, B. (2012). Carbon nanotubes and organic solar cells. Energy Environ. Sci., 5(3), 5919-5940. doi:10.1039/c1ee02276h es_ES
dc.description.references Pagona, G., Zervaki, G. E., Sandanayaka, A. S. D., Ito, O., Charalambidis, G., Hasobe, T., … Tagmatarchis, N. (2012). Carbon Nanohorn–Porphyrin Dimer Hybrid Material for Enhancing Light-Energy Conversion. The Journal of Physical Chemistry C, 116(17), 9439-9449. doi:10.1021/jp302178q es_ES
dc.description.references Costa, R. D., Feihl, S., Kahnt, A., Gambhir, S., Officer, D. L., Wallace, G. G., … Guldi, D. M. (2013). Carbon Nanohorns as Integrative Materials for Efficient Dye-Sensitized Solar Cells. Advanced Materials, 25(45), 6513-6518. doi:10.1002/adma.201301527 es_ES
dc.description.references Zhang, Q., Huang, J.-Q., Qian, W.-Z., Zhang, Y.-Y., & Wei, F. (2013). The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small, 9(8), 1237-1265. doi:10.1002/smll.201203252 es_ES
dc.description.references Lodermeyer, F., Costa, R. D., Casillas, R., Kohler, F. T. U., Wasserscheid, P., Prato, M., & Guldi, D. M. (2015). Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy & Environmental Science, 8(1), 241-246. doi:10.1039/c4ee02037e es_ES
dc.description.references Vizuete, M., Gómez-Escalonilla, M. J., Fierro, J. L. G., Sandanayaka, A. S. D., Hasobe, T., Yudasaka, M., … Langa, F. (2010). A Carbon NanohornPorphyrin Supramolecular Assembly for Photoinduced Electron-Transfer Processes. Chemistry - A European Journal, 16(35), 10752-10763. doi:10.1002/chem.201000299 es_ES
dc.description.references Vizuete, M., Gómez-Escalonilla, M. J., Fierro, J. L. G., Yudasaka, M., Iijima, S., Vartanian, M., … Langa, F. (2011). A soluble hybrid material combining carbon nanohorns and C60. Chemical Communications, 47(48), 12771. doi:10.1039/c1cc15446j es_ES
dc.description.references Pagona, G., Katerinopoulos, H. E., & Tagmatarchis, N. (2011). Synthesis, characterization, and photophysical properties of a carbon nanohorn–coumarin hybrid material. Chemical Physics Letters, 516(1-3), 76-81. doi:10.1016/j.cplett.2011.09.055 es_ES
dc.description.references Pagona, G., Rotas, G., Petsalakis, I. D., Theodorakopoulos, G., Fan, J., Maigné, A., … Tagmatarchis, N. (2007). Soluble Functionalized Carbon Nanohorns. Journal of Nanoscience and Nanotechnology, 7(10), 3468-3472. doi:10.1166/jnn.2007.821 es_ES
dc.description.references Pagona, G., Karousis, N., & Tagmatarchis, N. (2008). Aryl diazonium functionalization of carbon nanohorns. Carbon, 46(4), 604-610. doi:10.1016/j.carbon.2008.01.007 es_ES
dc.description.references Urbani, M., Pelado, B., de la Cruz, P., Yamanaka, K., Ito, O., & Langa, F. (2011). Synthesis and Photoinduced Energy‐ and Electron‐Transfer Processes of C 60 –Oligothienylenevinylene–C 70 Dumbbell Compounds. Chemistry – A European Journal, 17(19), 5432-5444. doi:10.1002/chem.201002318 es_ES
dc.description.references Cioffi, C., Campidelli, S., Brunetti, F. G., Meneghetti, M., & Prato, M. (2006). Functionalisation of carbon nanohorns. Chemical Communications, (20), 2129. doi:10.1039/b601176d es_ES
dc.description.references Utsumi, S., Honda, H., Hattori, Y., Kanoh, H., Takahashi, K., Sakai, H., … Kaneko, K. (2007). Direct Evidence on C−C Single Bonding in Single-Wall Carbon Nanohorn Aggregates. The Journal of Physical Chemistry C, 111(15), 5572-5575. doi:10.1021/jp071273k es_ES
dc.description.references Fantini, C., Pimenta, M. A., & Strano, M. S. (2008). Two-Phonon Combination Raman Modes in Covalently Functionalized Single-Wall Carbon Nanotubes. The Journal of Physical Chemistry C, 112(34), 13150-13155. doi:10.1021/jp803855z es_ES
dc.description.references Voggu, R., Rout, C. S., Franklin, A. D., Fisher, T. S., & Rao, C. N. R. (2008). Extraordinary Sensitivity of the Electronic Structure and Properties of Single-Walled Carbon Nanotubes to Molecular Charge-Transfer. The Journal of Physical Chemistry C, 112(34), 13053-13056. doi:10.1021/jp805136e es_ES
dc.description.references Do Nascimento, G. M., Hou, T., Kim, Y. A., Muramatsu, H., Hayashi, T., Endo, M., … Dresselhaus, M. S. (2011). Behavior of the high frequency Raman modes of double-wall carbon nanotubes after doping with bromine or iodine vapors. Carbon, 49(11), 3585-3596. doi:10.1016/j.carbon.2011.04.061 es_ES
dc.description.references Mevellec, J.-Y., Bergeret, C., Cousseau, J., Buisson, J.-P., Ewels, C. P., & Lefrant, S. (2011). Tuning the Raman Resonance Behavior of Single-Walled Carbon Nanotubes via Covalent Functionalization. Journal of the American Chemical Society, 133(42), 16938-16946. doi:10.1021/ja2062677 es_ES
dc.description.references Herrero-Latorre, C., Álvarez-Méndez, J., Barciela-García, J., García-Martín, S., & Peña-Crecente, R. M. (2015). Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Analytica Chimica Acta, 853, 77-94. doi:10.1016/j.aca.2014.10.008 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Bekyarova, E., Itkis, M. E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W. A., & Haddon, R. C. (2009). Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups. Journal of the American Chemical Society, 131(4), 1336-1337. doi:10.1021/ja8057327 es_ES
dc.description.references Barrejón, M., Pla, S., Berlanga, I., Gómez-Escalonilla, M. J., Martín-Gomis, L., Fierro, J. L. G., … Langa, F. (2015). Covalent decoration onto the outer walls of double walled carbon nanotubes with perylenediimides. Journal of Materials Chemistry C, 3(19), 4960-4969. doi:10.1039/c5tc00425j es_ES
dc.description.references Criado, A., Vizuete, M., Gómez-Escalonilla, M. J., García-Rodriguez, S., Fierro, J. L. G., Cobas, A., … Langa, F. (2013). Efficient cycloaddition of arynes to carbon nanotubes under microwave irradiation. Carbon, 63, 140-148. doi:10.1016/j.carbon.2013.06.064 es_ES
dc.description.references Gómez-Escalonilla, M. J., Atienzar, P., Garcia Fierro, J. L., García, H., & Langa, F. (2008). Heck reaction on single-walled carbon nanotubes. Synthesis and photochemical properties of a wall functionalized SWNT-anthracene derivative. Journal of Materials Chemistry, 18(13), 1592. doi:10.1039/b717011d es_ES
dc.description.references Del Canto, E., Flavin, K., Movia, D., Navio, C., Bittencourt, C., & Giordani, S. (2011). Critical Investigation of Defect Site Functionalization on Single-Walled Carbon Nanotubes. Chemistry of Materials, 23(1), 67-74. doi:10.1021/cm101978m es_ES
dc.description.references Giordani, S., Colomer, J.-F., Cattaruzza, F., Alfonsi, J., Meneghetti, M., Prato, M., & Bonifazi, D. (2009). Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon, 47(3), 578-588. doi:10.1016/j.carbon.2008.10.036 es_ES
dc.description.references Hahlin, M., Johansson, E. M. J., Plogmaker, S., Odelius, M., Hagberg, D. P., Sun, L., … Rensmo, H. (2010). Electronic and molecular structures of organic dye/TiO2 interfaces for solar cell applications: a core level photoelectron spectroscopy study. Physical Chemistry Chemical Physics, 12(7), 1507. doi:10.1039/b913548k es_ES
dc.description.references Kamat, S. V., Yadav, J. B., Puri, V., Puri, R. K., & Joo, O. S. (2011). Characterization of poly (3-methyl thiophene) thin films prepared by modified chemical bath deposition. Applied Surface Science, 258(1), 482-488. doi:10.1016/j.apsusc.2011.08.084 es_ES
dc.description.references Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211-225. doi:10.1002/sia.740030506 es_ES
dc.description.references Cuendet, P., Rao, K. K., Grätzel, M., & Hall, D. O. (1986). Light induced H2 evolution in a hydrogenase-TiO2 particle system by direct electron transfer or via Rhodium complexes. Biochimie, 68(1), 217-221. doi:10.1016/s0300-9084(86)81086-0 es_ES
dc.description.references Soldat, J., Marschall, R., & Wark, M. (2014). Improved overall water splitting with barium tantalate mixed oxide composites. Chem. Sci., 5(10), 3746-3752. doi:10.1039/c4sc01127a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem