- -

AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Nohales, Pedro es_ES
dc.contributor.author Domenech Mir, Mª José es_ES
dc.contributor.author Martínez De Alba, Angel Emilio es_ES
dc.contributor.author Micol, JL es_ES
dc.contributor.author Ponce, M.R. es_ES
dc.contributor.author Madueño Albi, Francisco es_ES
dc.date.accessioned 2017-10-20T07:18:57Z
dc.date.available 2017-10-20T07:18:57Z
dc.date.issued 2014 es_ES
dc.identifier.issn 0305-7364 es_ES
dc.identifier.uri http://hdl.handle.net/10251/89668
dc.description.abstract [EN] The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators. Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (beta-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype. A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants. The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression. es_ES
dc.description.sponsorship We thank Herve Vaucheret for the ago1-26 seeds, Antonio Serrano-Mislata for the pBTG6 construct, and Cristina Ferrandiz for critical reading of the manuscript. The collaboration of the IBMCP staff from the greenhouse, sequencing and microscopy facilities is also acknowledged. This work was supported by grants from the Spanish Ministerio de Ciencia e Innovacion (BIO2009-10876 and CSD2007-00057), the Spanish Ministerio de Economia y Competitividad (BFU2012-38929) and the Generalitat Valenciana (ACOMP2012-101). P.F.N. was supported by a fellowship from the I3P program of CSIC. en_EN
dc.language Inglés es_ES
dc.relation.ispartof Annals of Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Flower development es_ES
dc.subject TERMINAL FLOWER 1 es_ES
dc.subject TFL1 es_ES
dc.subject ARGONAUTE1 es_ES
dc.subject AGO1 es_ES
dc.subject plant architecture es_ES
dc.subject inflorescence architecture es_ES
dc.subject flowering es_ES
dc.subject Arabidopsis thaliana es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/aob/mcu132 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2009-10876/ES/Arquitectura De La Inflorescencia; Genes Que Controlan La Identidad De Los Meristemos Del Tallo/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOM%2FP2012%2F101/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-38929/ES/CONTROL DE LA FLORACION: LOS FACTORES DE TRANSCRIPCION VOZ COMO NUEVOS REGULADORES TRANSVERSALES DE LA RED GENETICA./
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Fernández Nohales, P.; Domenech Mir, MJ.; Martínez De Alba, AE.; Micol, J.; Ponce, M.; Madueño Albi, F. (2014). AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION. Annals of Botany. 114(7):1471-1481. https://doi.org/10.1093/aob/mcu132 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http:dx.doi.org/10.1093/aob/mcu132 es_ES
dc.description.upvformatpinicio 1471 es_ES
dc.description.upvformatpfin 1481 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 114 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\284725 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Consejo Superior de Investigaciones Científicas
dc.contributor.funder Ministerio de Educación y Cultura
dc.description.references Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983 es_ES
dc.description.references Ahn, J. H., Miller, D., Winter, V. J., Banfield, M. J., Lee, J. H., Yoo, S. Y., … Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 25(3), 605-614. doi:10.1038/sj.emboj.7600950 es_ES
dc.description.references Alvarez, J., Guli, C. L., Yu, X.-H., & Smyth, D. R. (1992). terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. The Plant Journal, 2(1), 103-116. doi:10.1111/j.1365-313x.1992.00103.x es_ES
dc.description.references Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.x es_ES
dc.description.references Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291 es_ES
dc.description.references Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874 es_ES
dc.description.references Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002 es_ES
dc.description.references Benlloch, R., Berbel, A., Serrano-Mislata, A., & Madueno, F. (2007). Floral Initiation and Inflorescence Architecture: A Comparative View. Annals of Botany, 100(3), 659-676. doi:10.1093/aob/mcm146 es_ES
dc.description.references Blázquez, M. A., Ferrándiz, C., Madueño, F., & Parcy, F. (2006). How Floral Meristems are Built. Plant Molecular Biology, 60(6), 855-870. doi:10.1007/s11103-006-0013-z es_ES
dc.description.references Bohmert, K. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal, 17(1), 170-180. doi:10.1093/emboj/17.1.170 es_ES
dc.description.references Bradley, D. (1997). Inflorescence Commitment and Architecture in Arabidopsis. Science, 275(5296), 80-83. doi:10.1126/science.275.5296.80 es_ES
dc.description.references Brodersen, P., & Voinnet, O. (2009). Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology, 10(2), 141-148. doi:10.1038/nrm2619 es_ES
dc.description.references Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035 es_ES
dc.description.references Cerutti, L., Mian, N., & Bateman, A. (2000). Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends in Biochemical Sciences, 25(10), 481-482. doi:10.1016/s0968-0004(00)01641-8 es_ES
dc.description.references Conti, L., & Bradley, D. (2007). TERMINAL FLOWER1 Is a Mobile Signal Controlling Arabidopsis Architecture. The Plant Cell, 19(3), 767-778. doi:10.1105/tpc.106.049767 es_ES
dc.description.references Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743 es_ES
dc.description.references Griffiths-Jones, S. (2004). The microRNA Registry. Nucleic Acids Research, 32(90001), 109D-111. doi:10.1093/nar/gkh023 es_ES
dc.description.references Griffiths-Jones, S. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(90001), D140-D144. doi:10.1093/nar/gkj112 es_ES
dc.description.references Hanano, S., & Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression. The Plant Cell, 23(9), 3172-3184. doi:10.1105/tpc.111.088641 es_ES
dc.description.references Ho, W. W. H., & Weigel, D. (2014). Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T. The Plant Cell, 26(2), 552-564. doi:10.1105/tpc.113.115220 es_ES
dc.description.references Huijser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 138(19), 4117-4129. doi:10.1242/dev.063511 es_ES
dc.description.references Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x es_ES
dc.description.references Jover-Gil, S., Candela, H., & Ponce, M.-R. (2005). Plant microRNAs and development. The International Journal of Developmental Biology, 49(5-6), 733-744. doi:10.1387/ijdb.052015sj es_ES
dc.description.references Jover-Gil, S., Candela, H., Robles, P., Aguilera, V., Barrero, J. M., Micol, J. L., & Ponce, M. R. (2012). The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. Plant and Cell Physiology, 53(7), 1322-1333. doi:10.1093/pcp/pcs077 es_ES
dc.description.references Kaufmann, K., Wellmer, F., Muino, J. M., Ferrier, T., Wuest, S. E., Kumar, V., … Riechmann, J. L. (2010). Orchestration of Floral Initiation by APETALA1. Science, 328(5974), 85-89. doi:10.1126/science.1185244 es_ES
dc.description.references Kidner, C. A., & Martienssen, R. A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 428(6978), 81-84. doi:10.1038/nature02366 es_ES
dc.description.references Kidner, C. A., & Martienssen, R. A. (2005). The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Developmental Biology, 280(2), 504-517. doi:10.1016/j.ydbio.2005.01.031 es_ES
dc.description.references Kidner, C. A., & Martienssen, R. A. (2005). The developmental role of microRNA in plants. Current Opinion in Plant Biology, 8(1), 38-44. doi:10.1016/j.pbi.2004.11.008 es_ES
dc.description.references Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181 es_ES
dc.description.references Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S., & Yanofsky, M. F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate. The Plant Cell, 11(6), 1007-1018. doi:10.1105/tpc.11.6.1007 es_ES
dc.description.references Liu, C., Teo, Z. W. N., Bi, Y., Song, S., Xi, W., Yang, X., … Yu, H. (2013). A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice. Developmental Cell, 24(6), 612-622. doi:10.1016/j.devcel.2013.02.013 es_ES
dc.description.references Liu, J. (2004). Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science, 305(5689), 1437-1441. doi:10.1126/science.1102513 es_ES
dc.description.references Alejandra Mandel, M., Gustafson-Brown, C., Savidge, B., & Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360(6401), 273-277. doi:10.1038/360273a0 es_ES
dc.description.references Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358 es_ES
dc.description.references Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329 es_ES
dc.description.references Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958 es_ES
dc.description.references Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D., & Coen, E. (2007). Evolution and Development of Inflorescence Architectures. Science, 316(5830), 1452-1456. doi:10.1126/science.1140429 es_ES
dc.description.references Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014 es_ES
dc.description.references Rusinov, V., Baev, V., Minkov, I. N., & Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Research, 33(Web Server), W696-W700. doi:10.1093/nar/gki364 es_ES
dc.description.references Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73 es_ES
dc.description.references Schultz, E. A., & Haughn, G. W. (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. The Plant Cell, 771-781. doi:10.1105/tpc.3.8.771 es_ES
dc.description.references Shannon, S., & Meeks-Wagner, D. R. (1991). A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. The Plant Cell, 877-892. doi:10.1105/tpc.3.9.877 es_ES
dc.description.references Shannon, S., & Meeks-Wagner, D. R. (1993). Genetic Interactions That Regulate Inflorescence Development in Arabidopsis. The Plant Cell, 639-655. doi:10.1105/tpc.5.6.639 es_ES
dc.description.references Song, J.-J. (2004). Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science, 305(5689), 1434-1437. doi:10.1126/science.1102514 es_ES
dc.description.references Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development, 20(7), 759-771. doi:10.1101/gad.1410506 es_ES
dc.description.references Vaucheret, H. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18(10), 1187-1197. doi:10.1101/gad.1201404 es_ES
dc.description.references Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. doi:10.1016/0092-8674(92)90295-n es_ES
dc.description.references Wigge, P. A. (2005). Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309(5737), 1056-1059. doi:10.1126/science.1114358 es_ES
dc.description.references Winter, C. M., Austin, R. S., Blanvillain-Baufumé, S., Reback, M. A., Monniaux, M., Wu, M.-F., … Wagner, D. (2011). LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Developmental Cell, 20(4), 430-443. doi:10.1016/j.devcel.2011.03.019 es_ES
dc.description.references Yang, L., Huang, W., Wang, H., Cai, R., Xu, Y., & Huang, H. (2006). Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development. Plant Molecular Biology, 61(1-2), 63-78. doi:10.1007/s11103-005-5992-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem