- -

AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION

Mostrar el registro completo del ítem

Fernández Nohales, P.; Domenech Mir, MJ.; Martínez De Alba, AE.; Micol, J.; Ponce, M.; Madueño Albi, F. (2014). AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION. Annals of Botany. 114(7):1471-1481. https://doi.org/10.1093/aob/mcu132

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/89668

Ficheros en el ítem

Metadatos del ítem

Título: AGO1 CONTROLS INFLORESCENCE ARCHITECTURE POSSIBLY BY REGULATING TFL1 EXPRESSION
Autor: Fernández Nohales, Pedro Domenech Mir, Mª José Martínez De Alba, Angel Emilio Micol, JL Ponce, M.R. Madueño Albi, Francisco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants ...[+]
Palabras clave: Flower development , TERMINAL FLOWER 1 , TFL1 , ARGONAUTE1 , AGO1 , plant architecture , inflorescence architecture , flowering , Arabidopsis thaliana
Derechos de uso: Reserva de todos los derechos
Fuente:
Annals of Botany. (issn: 0305-7364 )
DOI: 10.1093/aob/mcu132
Versión del editor: http:dx.doi.org/10.1093/aob/mcu132
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2009-10876/ES/Arquitectura De La Inflorescencia; Genes Que Controlan La Identidad De Los Meristemos Del Tallo/
info:eu-repo/grantAgreement/GVA//ACOM%2FP2012%2F101/
info:eu-repo/grantAgreement/MEC//CSD2007-00057/ES/Función y potencial biotecnológico de los factores de transcripción de las plantas./
info:eu-repo/grantAgreement/MINECO//BFU2012-38929/ES/CONTROL DE LA FLORACION: LOS FACTORES DE TRANSCRIPCION VOZ COMO NUEVOS REGULADORES TRANSVERSALES DE LA RED GENETICA./
Agradecimientos:
We thank Herve Vaucheret for the ago1-26 seeds, Antonio Serrano-Mislata for the pBTG6 construct, and Cristina Ferrandiz for critical reading of the manuscript. The collaboration of the IBMCP staff from the greenhouse, ...[+]
Tipo: Artículo

References

Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983

Ahn, J. H., Miller, D., Winter, V. J., Banfield, M. J., Lee, J. H., Yoo, S. Y., … Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 25(3), 605-614. doi:10.1038/sj.emboj.7600950

Alvarez, J., Guli, C. L., Yu, X.-H., & Smyth, D. R. (1992). terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. The Plant Journal, 2(1), 103-116. doi:10.1111/j.1365-313x.1992.00103.x [+]
Abe, M. (2005). FD, a bZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science, 309(5737), 1052-1056. doi:10.1126/science.1115983

Ahn, J. H., Miller, D., Winter, V. J., Banfield, M. J., Lee, J. H., Yoo, S. Y., … Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. The EMBO Journal, 25(3), 605-614. doi:10.1038/sj.emboj.7600950

Alvarez, J., Guli, C. L., Yu, X.-H., & Smyth, D. R. (1992). terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. The Plant Journal, 2(1), 103-116. doi:10.1111/j.1365-313x.1992.00103.x

Amasino, R. (2010). Seasonal and developmental timing of flowering. The Plant Journal, 61(6), 1001-1013. doi:10.1111/j.1365-313x.2010.04148.x

Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627-639. doi:10.1038/nrg3291

Baulcombe, D. (2004). RNA silencing in plants. Nature, 431(7006), 356-363. doi:10.1038/nature02874

Bartel, D. P. (2009). MicroRNAs: Target Recognition and Regulatory Functions. Cell, 136(2), 215-233. doi:10.1016/j.cell.2009.01.002

Benlloch, R., Berbel, A., Serrano-Mislata, A., & Madueno, F. (2007). Floral Initiation and Inflorescence Architecture: A Comparative View. Annals of Botany, 100(3), 659-676. doi:10.1093/aob/mcm146

Blázquez, M. A., Ferrándiz, C., Madueño, F., & Parcy, F. (2006). How Floral Meristems are Built. Plant Molecular Biology, 60(6), 855-870. doi:10.1007/s11103-006-0013-z

Bohmert, K. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal, 17(1), 170-180. doi:10.1093/emboj/17.1.170

Bradley, D. (1997). Inflorescence Commitment and Architecture in Arabidopsis. Science, 275(5296), 80-83. doi:10.1126/science.275.5296.80

Brodersen, P., & Voinnet, O. (2009). Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology, 10(2), 141-148. doi:10.1038/nrm2619

Carthew, R. W., & Sontheimer, E. J. (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136(4), 642-655. doi:10.1016/j.cell.2009.01.035

Cerutti, L., Mian, N., & Bateman, A. (2000). Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends in Biochemical Sciences, 25(10), 481-482. doi:10.1016/s0968-0004(00)01641-8

Conti, L., & Bradley, D. (2007). TERMINAL FLOWER1 Is a Mobile Signal Controlling Arabidopsis Architecture. The Plant Cell, 19(3), 767-778. doi:10.1105/tpc.106.049767

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743

Griffiths-Jones, S. (2004). The microRNA Registry. Nucleic Acids Research, 32(90001), 109D-111. doi:10.1093/nar/gkh023

Griffiths-Jones, S. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research, 34(90001), D140-D144. doi:10.1093/nar/gkj112

Hanano, S., & Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 Is Involved in the Regulation of Flowering Time and Inflorescence Development through Transcriptional Repression. The Plant Cell, 23(9), 3172-3184. doi:10.1105/tpc.111.088641

Ho, W. W. H., & Weigel, D. (2014). Structural Features Determining Flower-Promoting Activity of Arabidopsis FLOWERING LOCUS T. The Plant Cell, 26(2), 552-564. doi:10.1105/tpc.113.115220

Huijser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 138(19), 4117-4129. doi:10.1242/dev.063511

Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.x

Jover-Gil, S., Candela, H., & Ponce, M.-R. (2005). Plant microRNAs and development. The International Journal of Developmental Biology, 49(5-6), 733-744. doi:10.1387/ijdb.052015sj

Jover-Gil, S., Candela, H., Robles, P., Aguilera, V., Barrero, J. M., Micol, J. L., & Ponce, M. R. (2012). The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. Plant and Cell Physiology, 53(7), 1322-1333. doi:10.1093/pcp/pcs077

Kaufmann, K., Wellmer, F., Muino, J. M., Ferrier, T., Wuest, S. E., Kumar, V., … Riechmann, J. L. (2010). Orchestration of Floral Initiation by APETALA1. Science, 328(5974), 85-89. doi:10.1126/science.1185244

Kidner, C. A., & Martienssen, R. A. (2004). Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 428(6978), 81-84. doi:10.1038/nature02366

Kidner, C. A., & Martienssen, R. A. (2005). The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Developmental Biology, 280(2), 504-517. doi:10.1016/j.ydbio.2005.01.031

Kidner, C. A., & Martienssen, R. A. (2005). The developmental role of microRNA in plants. Current Opinion in Plant Biology, 8(1), 38-44. doi:10.1016/j.pbi.2004.11.008

Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181

Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S., & Yanofsky, M. F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 Specify Meristem Fate. The Plant Cell, 11(6), 1007-1018. doi:10.1105/tpc.11.6.1007

Liu, C., Teo, Z. W. N., Bi, Y., Song, S., Xi, W., Yang, X., … Yu, H. (2013). A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice. Developmental Cell, 24(6), 612-622. doi:10.1016/j.devcel.2013.02.013

Liu, J. (2004). Argonaute2 Is the Catalytic Engine of Mammalian RNAi. Science, 305(5689), 1437-1441. doi:10.1126/science.1102513

Alejandra Mandel, M., Gustafson-Brown, C., Savidge, B., & Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 360(6401), 273-277. doi:10.1038/360273a0

Morel, J.-B., Godon, C., Mourrain, P., Béclin, C., Boutet, S., Feuerbach, F., … Vaucheret, H. (2002). Fertile Hypomorphic ARGONAUTE (ago1) Mutants Impaired in Post-Transcriptional Gene Silencing and Virus Resistance. The Plant Cell, 14(3), 629-639. doi:10.1105/tpc.010358

Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329

Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958

Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D., & Coen, E. (2007). Evolution and Development of Inflorescence Architectures. Science, 316(5830), 1452-1456. doi:10.1126/science.1140429

Qi, Y., Denli, A. M., & Hannon, G. J. (2005). Biochemical Specialization within Arabidopsis RNA Silencing Pathways. Molecular Cell, 19(3), 421-428. doi:10.1016/j.molcel.2005.06.014

Rusinov, V., Baev, V., Minkov, I. N., & Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Research, 33(Web Server), W696-W700. doi:10.1093/nar/gki364

Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73

Schultz, E. A., & Haughn, G. W. (1991). LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis. The Plant Cell, 771-781. doi:10.1105/tpc.3.8.771

Shannon, S., & Meeks-Wagner, D. R. (1991). A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development. The Plant Cell, 877-892. doi:10.1105/tpc.3.9.877

Shannon, S., & Meeks-Wagner, D. R. (1993). Genetic Interactions That Regulate Inflorescence Development in Arabidopsis. The Plant Cell, 639-655. doi:10.1105/tpc.5.6.639

Song, J.-J. (2004). Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity. Science, 305(5689), 1434-1437. doi:10.1126/science.1102514

Vaucheret, H. (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development, 20(7), 759-771. doi:10.1101/gad.1410506

Vaucheret, H. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development, 18(10), 1187-1197. doi:10.1101/gad.1201404

Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. doi:10.1016/0092-8674(92)90295-n

Wigge, P. A. (2005). Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 309(5737), 1056-1059. doi:10.1126/science.1114358

Winter, C. M., Austin, R. S., Blanvillain-Baufumé, S., Reback, M. A., Monniaux, M., Wu, M.-F., … Wagner, D. (2011). LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Developmental Cell, 20(4), 430-443. doi:10.1016/j.devcel.2011.03.019

Yang, L., Huang, W., Wang, H., Cai, R., Xu, Y., & Huang, H. (2006). Characterizations of a Hypomorphic Argonaute1 Mutant Reveal Novel AGO1 Functions in Arabidopsis Lateral Organ Development. Plant Molecular Biology, 61(1-2), 63-78. doi:10.1007/s11103-005-5992-7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem