- -

HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis

Mostrar el registro completo del ítem

González-Vélez, H.; Mier, M.; Julià-Sapé, M.; Arvanitis, TN.; García Gómez, JM.; Robles Viejo, M.; Lewis, PH.... (2009). HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. APPLIED INTELLIGENCE. 30(3):191-202. doi:10.1007/s10489-007-0085-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/90353

Ficheros en el ítem

Metadatos del ítem

Título: HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis
Autor: González-Vélez, Horacio Mier, Mariola Julià-Sapé, Margarida Arvanitis, Theodoros N. García Gómez, Juan Miguel Robles Viejo, Monserrat Lewis, Paul H. Dasmahapatra, Srinandan Dupplaw, David Peet, Andrew Charles Arús, Carles Celda Muñoz, Bernardo Van Huffel, Sabine Lluch-Ariet, Magí
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] We present an agent-based distributed decision support system for the diagnosis and prognosis of brain tumors developed by the HealthAgents project. HealthAgents is a European Union funded research project, which aims ...[+]
Palabras clave: Machine learning , Decision support systems , Computational intelligence , Agents , Pattern recognition , Medical ontologies , Medical informatics , Magnetic resonance
Derechos de uso: Reserva de todos los derechos
Fuente:
APPLIED INTELLIGENCE. (issn: 0924-669X )
DOI: 10.1007/s10489-007-0085-8
Versión del editor: https://link.springer.com/article/10.1007/s10489-007-0085-8
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/
Agradecimientos:
First and foremost, we profoundly thank the HEALTHAGENTS Consortium who are ultimately the people in charge of this research endeavor. Without their help and consideration, this article would certainly not have been ...[+]
Tipo: Artículo

References

Alpaydin E (2004) Introduction to machine learning. Adaptive computation and machine learning. MIT Press, Cambridge

Armstrong TS, Cohen MZ, Weinberg J, Gilbert MR (2004) Imaging techniques in neuro-oncology. Semin Oncol Nurs 20(4):231–239

Arús C, Celda B, Dasmahapatra S, Dupplaw D, González-Vélez H, van Huffel S, Lewis P, Lluch i Ariet M, Mier M, Peet A, Robles M (2006) On the design of a web-based decision support system for brain tumour diagnosis using distributed agents. In: WI-IAT 2006. IEEE, Hong Kong, pp 208–211 [+]
Alpaydin E (2004) Introduction to machine learning. Adaptive computation and machine learning. MIT Press, Cambridge

Armstrong TS, Cohen MZ, Weinberg J, Gilbert MR (2004) Imaging techniques in neuro-oncology. Semin Oncol Nurs 20(4):231–239

Arús C, Celda B, Dasmahapatra S, Dupplaw D, González-Vélez H, van Huffel S, Lewis P, Lluch i Ariet M, Mier M, Peet A, Robles M (2006) On the design of a web-based decision support system for brain tumour diagnosis using distributed agents. In: WI-IAT 2006. IEEE, Hong Kong, pp 208–211

Barton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Bell B, Griffiths J (1999) Comparison of in vivo 1H MRS of human brain tumors with 1H HR-MAS spectroscopy of intact biopsy samples in vitro. Magn Reson Mater Phys 8(2):121–128

Beckett D (2007) Turtle—terse RDF triple language. ILRT University of Bristol. http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/ (Last accessed: 13 Feb 2007)

Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: AGENTS’01. ACM Press, Montreal, pp 216–217

Bishop CM (2006) Pattern recognition and machine learning. Information Science and Statistics. Springer, New York

Bizer C, Cyganiak R, Garbers J, Maresch O (2006) D2RQ-treating Non-RDF relational databases as virtual RDF graphs, v0.5 edn. Freie Universitat, Berlin

Bray F, Sankila R, Ferlay J, Parkin DM (2002) Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer 38(1):99–166

Brugali D, Sycara. K (2000) Towards agent oriented application frameworks. ACM Comput Surv 32(1):21–27

Dasmahapatra S, Dupplaw D, Hu B, Lewis PH, Shadbolt N (2005) Ontology-mediated distributed decision support for breast cancer. In: AIME 2005. Lecture notes in computer science, vol 3581. Springer, Aberdeen, pp 221–225

De Turck F, Decruyenaere J, Thysebaert P, Van Hoecke S, Volckaert B, Danneels C, Colpaert K, De Moor G (2007) Design of a flexible platform for execution of medical decision support agents in the intensive care unit. Comput Biol Med 37(1):97–112

DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

Favre J, Taha JM, Burchiel KJ (2002) An analysis of the respective risks of hematoma formation in 361 consecutive morphological and functional stereotactic procedures. Neurosurgery 50(1):48–57

Field M, Witham TF, Flickinger JC, Kondziolka D, Lunsford LD (2001) Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. J Neurosurg 94(4):545–551

Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21(1–3):43–63

Gennari JH, Musen MA, Fergerson RW, Grosso WE (2003) Crubézy, M., Eriksson, H., N.F. Noy, S.W. Tu: The evolution of Protégé: an environment for knowledge-based systems development. Int J Hum-Comput Stud 58(1):89–123

Glotsos D, Tohka J, Ravazoula P, Cavouras D, Nikiforidis G (2005) Automated diagnosis of brain tumors astrocytomas using probabilistic neural network clustering and support vector machines. Int J Neural Syst 15(1–2):1–11

González-Vélez V, Flores-Rodríguez T, Flores-Avalos B, González-Vélez H (1997) A statistical brain-mapping system for the evaluation of communication disorders. In: CBMS 1997. IEEE, Maribor, pp 167–172

Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 11(4–5):148–156

Hall W (1998) The safety and efficacy of stereotactic biopsy for intracranial lesions. Cancer 82(9):1749–1755

Hamdi MS (2006) MASACAD: A multiagent-based approach to information customization. IEEE Intell Syst 21(1):60–67

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

Haque S, Mital D, Srinivasan S (2002) Advances in biomedical informatics for the management of cancer. Ann NY Acad Sci 980:287–297

Hendler J (2001) Agents and the semantic web. IEEE Intell Syst 16(2):30–37

Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumors and masses. NMR Biomed 16(3):123–131

IEEE Computer Society (2007) The foundation of intelligent physical agents. http://www.fipa.org/ (Last accessed 30 May 2007)

Julià-Sapé M, Acosta D, Majós C, Moreno-Torres A, Wesseling P, Acebes JJ, Griffiths JR, Arús C (2006) Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. J Neurosurg 105(1):6–14

Julià-Sapé M, Acosta D, Mier M, Arús C, Watson D (2006) The INTERPRET consortium: a multi-center web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients. Magn Reson Mater Phys 19(1):22–33

Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armañanzas R, Santafé G, Perez A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinform 7(1):86–112

Lee CS, Jiang CC, Hsieh TC (2006) A genetic fuzzy agent using ontology model for meeting scheduling system. Inf Sci 176(9):1131–1155

Lee CS, Pan CY (2004) An intelligent fuzzy agent for meeting scheduling decision support system. Fuzzy Sets Syst 142(3):467–488

Lee CS, Wang MH (2007) Ontology-based intelligent healthcare agent and its application to respiratory waveform recognition. Expert Syst Appl 33(3):606–619

Luck M, Merelli E (2005) Agents in bioinformatics. Knowl Eng Rev 20(2):117–125

Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, Moreno-Torres A, Graaf MVD, Tate AR, Arús C, Van Huffel S (2004) Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 31(1):73–89

Martínez-Bisbal MC, Martí-Bonmatí L, Piquer J, Revert A, Ferrer P, Llácer JL, Piotto M, Assemat O, Celda B (2004) 1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo. NMR Biomed 17(4):191–205

McGuinness DL, van Harmelen F (2004) OWL web ontology language overview. Standard W3C Recommendation 10 February 2004, World Wide Web Consortium (W3C). http://www.w3.org/TR/owl-features/ (Last accessed 13 January 2007)

Merelli E, Armano G, Cannata N, Corradini F, d’Inverno M, Doms A, Lord P, Martin A, Milanesi L, Möller S, Schroeder M, Luck M (2007) Agents in bioinformatics, computational and systems biology. Brief Bioinform 8(1):45–59

Mischel P, Cloughesy T, Nelson S (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature Rev Neuroscie 5:782–792

Mitchell TM (1999) Machine learning and data mining. Commun ACM 42(11):30–36

Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63:1602–1607

Peet AC, Leach MO, Pinkerton CR, Price P, Williams SR, Grundy RG (2005) The development of functional imaging in the diagnosis, management and understanding of childhood brain tumors. Pediatr Blood Cancer 44(2):103–113

Robertson D (2004) A lightweight coordination calculus for agent systems. In: DALT 2004. Lecture notes in computer science, vol 3476. Springer, New York, pp 183–197

Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Bosson JL, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumors using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4):411–434

The eTUMOUR Consortium (2004–2008) eTUMOUR. http://www.etumour.net (Last accessed: 5 January 2007)

The HealthAgents Consortium (2006–2008) HealthAgents. http://www.healthagents.net (Last accessed: 5 January 2007)

Tortajada S, García-Gómez JM, Vidal C, Arús C, Julià-Sapé M, Moreno A, Robles M (2006) Improved classification by pattern recognition of brain tumors combining long and short echo time 1H-MR spectra. In: ESMRMB 2006: 23rd annual scientific meeting. Magn Reson Mater Phys 19(1):168–169

Universitat Autònoma de Barcelona (2000–2002) INTERPRET project. http://azizu.uab.es/INTERPRET/ (Last accessed: 5 January 2007)

Vapnik VN (1999) The nature of statistical learning theory 2nd edn. Statistics for engineering and information science. Springer, New York

Yan H, Jiang Y, Zheng J, Peng C, Li Q (2006) A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst Appl 30(2):272–281

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem