- -

HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis

Show simple item record

Files in this item

dc.contributor.author González-Vélez, Horacio es_ES
dc.contributor.author Mier, Mariola es_ES
dc.contributor.author Julià-Sapé, Margarida es_ES
dc.contributor.author Arvanitis, Theodoros N. es_ES
dc.contributor.author García Gómez, Juan Miguel es_ES
dc.contributor.author Robles Viejo, Monserrat es_ES
dc.contributor.author Lewis, Paul H. es_ES
dc.contributor.author Dasmahapatra, Srinandan es_ES
dc.contributor.author Dupplaw, David es_ES
dc.contributor.author Peet, Andrew Charles es_ES
dc.contributor.author Arús, Carles es_ES
dc.contributor.author Celda Muñoz, Bernardo es_ES
dc.contributor.author Van Huffel, Sabine es_ES
dc.contributor.author Lluch-Ariet, Magí es_ES
dc.date.accessioned 2017-11-02T13:23:14Z
dc.date.available 2017-11-02T13:23:14Z
dc.date.issued 2009 es_ES
dc.identifier.issn 0924-669X es_ES
dc.identifier.uri http://hdl.handle.net/10251/90353
dc.description.abstract [EN] We present an agent-based distributed decision support system for the diagnosis and prognosis of brain tumors developed by the HealthAgents project. HealthAgents is a European Union funded research project, which aims to enhance the classification of brain tumors using such a decision support system based on intelligent agents to securely connect a network of clinical centers. The HealthAgents system is implementing novel pattern recognition discrimination methods, in order to analyze in vivo Magnetic Resonance Spectroscopy (MRS) and ex vivo/in vitro High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS) and DNA micro-array data. HealthAgents intends not only to apply forefront agent technology to the biomedical field, but also develop the HealthAgents network, a globally distributed information and knowledge repository for brain tumor diagnosis and prognosis. es_ES
dc.description.sponsorship First and foremost, we profoundly thank the HEALTHAGENTS Consortium who are ultimately the people in charge of this research endeavor. Without their help and consideration, this article would certainly not have been possible. Second, we thank Francesc Estanyol, Xavier Rafael Palou and Roman Roset for their crucial contribution in the development of the prototype of HEALTHAGENTS, Tiphaine Dalmas for the development of the EbSS, and Jan Luts and Javier Vicente for their comments to the machine learning section. Third, we express our gratitude to the anonymous reviewers who have provided us with feedback to improve the overall quality of the final manuscript. Access to the source code for the Interpret DSS and GUI and for some preprocessing modules is gratefully acknowledged to the Interpret partners. This research has been carried out under the HEALTHAGENTS research grant, funded by the Information Society Technologies priority of the European Union Sixth Framework Programme as an Specific Targeted Research Project with contract no.: IST-2004-27214 (2006– 2008).
dc.language Inglés es_ES
dc.relation.ispartof APPLIED INTELLIGENCE es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Machine learning es_ES
dc.subject Decision support systems es_ES
dc.subject Computational intelligence es_ES
dc.subject Agents es_ES
dc.subject Pattern recognition es_ES
dc.subject Medical ontologies es_ES
dc.subject Medical informatics es_ES
dc.subject Magnetic resonance es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10489-007-0085-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/027214/EU/Agent-based Distributed Decision Support System for brain tumour diagnosis and prognosis/HEALTHAGENTS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation González-Vélez, H.; Mier, M.; Julià-Sapé, M.; Arvanitis, TN.; García Gómez, JM.; Robles Viejo, M.; Lewis, PH.... (2009). HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. APPLIED INTELLIGENCE. 30(3):191-202. doi:10.1007/s10489-007-0085-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://link.springer.com/article/10.1007/s10489-007-0085-8 es_ES
dc.description.upvformatpinicio 191 es_ES
dc.description.upvformatpfin 202 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\247202 es_ES
dc.contributor.funder European Commission
dc.description.references Alpaydin E (2004) Introduction to machine learning. Adaptive computation and machine learning. MIT Press, Cambridge es_ES
dc.description.references Armstrong TS, Cohen MZ, Weinberg J, Gilbert MR (2004) Imaging techniques in neuro-oncology. Semin Oncol Nurs 20(4):231–239 es_ES
dc.description.references Arús C, Celda B, Dasmahapatra S, Dupplaw D, González-Vélez H, van Huffel S, Lewis P, Lluch i Ariet M, Mier M, Peet A, Robles M (2006) On the design of a web-based decision support system for brain tumour diagnosis using distributed agents. In: WI-IAT 2006. IEEE, Hong Kong, pp 208–211 es_ES
dc.description.references Barton S, Howe F, Tomlins A, Cudlip S, Nicholson J, Bell B, Griffiths J (1999) Comparison of in vivo 1H MRS of human brain tumors with 1H HR-MAS spectroscopy of intact biopsy samples in vitro. Magn Reson Mater Phys 8(2):121–128 es_ES
dc.description.references Beckett D (2007) Turtle—terse RDF triple language. ILRT University of Bristol. http://www.ilrt.bris.ac.uk/discovery/2004/01/turtle/ (Last accessed: 13 Feb 2007) es_ES
dc.description.references Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: AGENTS’01. ACM Press, Montreal, pp 216–217 es_ES
dc.description.references Bishop CM (2006) Pattern recognition and machine learning. Information Science and Statistics. Springer, New York es_ES
dc.description.references Bizer C, Cyganiak R, Garbers J, Maresch O (2006) D2RQ-treating Non-RDF relational databases as virtual RDF graphs, v0.5 edn. Freie Universitat, Berlin es_ES
dc.description.references Bray F, Sankila R, Ferlay J, Parkin DM (2002) Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer 38(1):99–166 es_ES
dc.description.references Brugali D, Sycara. K (2000) Towards agent oriented application frameworks. ACM Comput Surv 32(1):21–27 es_ES
dc.description.references Dasmahapatra S, Dupplaw D, Hu B, Lewis PH, Shadbolt N (2005) Ontology-mediated distributed decision support for breast cancer. In: AIME 2005. Lecture notes in computer science, vol 3581. Springer, Aberdeen, pp 221–225 es_ES
dc.description.references De Turck F, Decruyenaere J, Thysebaert P, Van Hoecke S, Volckaert B, Danneels C, Colpaert K, De Moor G (2007) Design of a flexible platform for execution of medical decision support agents in the intensive care unit. Comput Biol Med 37(1):97–112 es_ES
dc.description.references DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123 es_ES
dc.description.references Favre J, Taha JM, Burchiel KJ (2002) An analysis of the respective risks of hematoma formation in 361 consecutive morphological and functional stereotactic procedures. Neurosurgery 50(1):48–57 es_ES
dc.description.references Field M, Witham TF, Flickinger JC, Kondziolka D, Lunsford LD (2001) Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. J Neurosurg 94(4):545–551 es_ES
dc.description.references Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21(1–3):43–63 es_ES
dc.description.references Gennari JH, Musen MA, Fergerson RW, Grosso WE (2003) Crubézy, M., Eriksson, H., N.F. Noy, S.W. Tu: The evolution of Protégé: an environment for knowledge-based systems development. Int J Hum-Comput Stud 58(1):89–123 es_ES
dc.description.references Glotsos D, Tohka J, Ravazoula P, Cavouras D, Nikiforidis G (2005) Automated diagnosis of brain tumors astrocytomas using probabilistic neural network clustering and support vector machines. Int J Neural Syst 15(1–2):1–11 es_ES
dc.description.references González-Vélez V, Flores-Rodríguez T, Flores-Avalos B, González-Vélez H (1997) A statistical brain-mapping system for the evaluation of communication disorders. In: CBMS 1997. IEEE, Maribor, pp 167–172 es_ES
dc.description.references Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods. NMR Biomed 11(4–5):148–156 es_ES
dc.description.references Hall W (1998) The safety and efficacy of stereotactic biopsy for intracranial lesions. Cancer 82(9):1749–1755 es_ES
dc.description.references Hamdi MS (2006) MASACAD: A multiagent-based approach to information customization. IEEE Intell Syst 21(1):60–67 es_ES
dc.description.references Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70 es_ES
dc.description.references Haque S, Mital D, Srinivasan S (2002) Advances in biomedical informatics for the management of cancer. Ann NY Acad Sci 980:287–297 es_ES
dc.description.references Hendler J (2001) Agents and the semantic web. IEEE Intell Syst 16(2):30–37 es_ES
dc.description.references Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumors and masses. NMR Biomed 16(3):123–131 es_ES
dc.description.references IEEE Computer Society (2007) The foundation of intelligent physical agents. http://www.fipa.org/ (Last accessed 30 May 2007) es_ES
dc.description.references Julià-Sapé M, Acosta D, Majós C, Moreno-Torres A, Wesseling P, Acebes JJ, Griffiths JR, Arús C (2006) Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. J Neurosurg 105(1):6–14 es_ES
dc.description.references Julià-Sapé M, Acosta D, Mier M, Arús C, Watson D (2006) The INTERPRET consortium: a multi-center web-accessible and quality control-checked database of in vivo MR spectra of brain tumour patients. Magn Reson Mater Phys 19(1):22–33 es_ES
dc.description.references Larrañaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA, Armañanzas R, Santafé G, Perez A, Robles V (2006) Machine learning in bioinformatics. Brief Bioinform 7(1):86–112 es_ES
dc.description.references Lee CS, Jiang CC, Hsieh TC (2006) A genetic fuzzy agent using ontology model for meeting scheduling system. Inf Sci 176(9):1131–1155 es_ES
dc.description.references Lee CS, Pan CY (2004) An intelligent fuzzy agent for meeting scheduling decision support system. Fuzzy Sets Syst 142(3):467–488 es_ES
dc.description.references Lee CS, Wang MH (2007) Ontology-based intelligent healthcare agent and its application to respiratory waveform recognition. Expert Syst Appl 33(3):606–619 es_ES
dc.description.references Luck M, Merelli E (2005) Agents in bioinformatics. Knowl Eng Rev 20(2):117–125 es_ES
dc.description.references Lukas L, Devos A, Suykens JAK, Vanhamme L, Howe FA, Majós C, Moreno-Torres A, Graaf MVD, Tate AR, Arús C, Van Huffel S (2004) Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 31(1):73–89 es_ES
dc.description.references Martínez-Bisbal MC, Martí-Bonmatí L, Piquer J, Revert A, Ferrer P, Llácer JL, Piotto M, Assemat O, Celda B (2004) 1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo. NMR Biomed 17(4):191–205 es_ES
dc.description.references McGuinness DL, van Harmelen F (2004) OWL web ontology language overview. Standard W3C Recommendation 10 February 2004, World Wide Web Consortium (W3C). http://www.w3.org/TR/owl-features/ (Last accessed 13 January 2007) es_ES
dc.description.references Merelli E, Armano G, Cannata N, Corradini F, d’Inverno M, Doms A, Lord P, Martin A, Milanesi L, Möller S, Schroeder M, Luck M (2007) Agents in bioinformatics, computational and systems biology. Brief Bioinform 8(1):45–59 es_ES
dc.description.references Mischel P, Cloughesy T, Nelson S (2004) DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature Rev Neuroscie 5:782–792 es_ES
dc.description.references Mitchell TM (1999) Machine learning and data mining. Commun ACM 42(11):30–36 es_ES
dc.description.references Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63:1602–1607 es_ES
dc.description.references Peet AC, Leach MO, Pinkerton CR, Price P, Williams SR, Grundy RG (2005) The development of functional imaging in the diagnosis, management and understanding of childhood brain tumors. Pediatr Blood Cancer 44(2):103–113 es_ES
dc.description.references Robertson D (2004) A lightweight coordination calculus for agent systems. In: DALT 2004. Lecture notes in computer science, vol 3476. Springer, New York, pp 183–197 es_ES
dc.description.references Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300 es_ES
dc.description.references Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Bosson JL, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C (2006) Development of a decision support system for diagnosis and grading of brain tumors using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4):411–434 es_ES
dc.description.references The eTUMOUR Consortium (2004–2008) eTUMOUR. http://www.etumour.net (Last accessed: 5 January 2007) es_ES
dc.description.references The HealthAgents Consortium (2006–2008) HealthAgents. http://www.healthagents.net (Last accessed: 5 January 2007) es_ES
dc.description.references Tortajada S, García-Gómez JM, Vidal C, Arús C, Julià-Sapé M, Moreno A, Robles M (2006) Improved classification by pattern recognition of brain tumors combining long and short echo time 1H-MR spectra. In: ESMRMB 2006: 23rd annual scientific meeting. Magn Reson Mater Phys 19(1):168–169 es_ES
dc.description.references Universitat Autònoma de Barcelona (2000–2002) INTERPRET project. http://azizu.uab.es/INTERPRET/ (Last accessed: 5 January 2007) es_ES
dc.description.references Vapnik VN (1999) The nature of statistical learning theory 2nd edn. Statistics for engineering and information science. Springer, New York es_ES
dc.description.references Yan H, Jiang Y, Zheng J, Peng C, Li Q (2006) A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst Appl 30(2):272–281 es_ES


This item appears in the following Collection(s)

Show simple item record