- -

CLASSIFICATION AND PREDICTION OF PORT VARIABLES

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

CLASSIFICATION AND PREDICTION OF PORT VARIABLES

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molina Serrano, Beatriz es_ES
dc.contributor.author González Cancelas, María Nicoletta es_ES
dc.contributor.author Soler Flores, Francisco es_ES
dc.contributor.author Camarero Orive, Alberto es_ES
dc.date.accessioned 2017-11-10T10:42:04Z
dc.date.available 2017-11-10T10:42:04Z
dc.date.issued 2016-06-01
dc.identifier.isbn 9788460899600
dc.identifier.uri http://hdl.handle.net/10251/90834
dc.description.abstract [EN] Many variables are included in planning and management of port terminals. They can be economic, social, environmental and institutional. Agent needs to know relationship between these variables to modify planning conditions. Use of Bayesian Networks allows for classifying, predicting and diagnosing these variables. Bayesian Networks allow for estimating subsequent probability of unknown variables, basing on know variables. In planning level, it means that it is not necessary to know all variables because their relationships are known. Agent can know interesting information about how port variables are connected. It can be interpreted as cause-effect relationship. Bayesian Networks can be used to make optimal decisions by introduction of possible actions and utility of their results. In proposed methodology, a data base has been generated with more than 40 port variables. They have been classified in economic, social, environmental and institutional variables, in the same way that smart port studies in Spanish Port System make. From this data base, a network has been generated using a non-cyclic conducted grafo which allows for knowing port variable relationships - parents-children relationships-. Obtained network exhibits that economic variables are – in cause-effect terms- cause of rest of variable typologies. Economic variables represent parent role in the most of cases. Moreover, when environmental variables are known, obtained network allows for estimating subsequent probability of social variables. It has been concluded that Bayesian Networks allow for modeling uncertainty in a probabilistic way, even when number of variables is high as occurs in planning and management of port terminals. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof XII Congreso de ingeniería del transporte. 7, 8 y 9 de Junio, Valencia (España) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Sustainability es_ES
dc.subject Ports es_ES
dc.subject Bayesian Networks es_ES
dc.title CLASSIFICATION AND PREDICTION OF PORT VARIABLES es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CIT2016.2015.3226
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Molina Serrano, B.; González Cancelas, MN.; Soler Flores, F.; Camarero Orive, A. (2016). CLASSIFICATION AND PREDICTION OF PORT VARIABLES. En XII Congreso de ingeniería del transporte. 7, 8 y 9 de Junio, Valencia (España). Editorial Universitat Politècnica de València. 1437-1444. https://doi.org/10.4995/CIT2016.2015.3226 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CIT2016. Congreso de Ingeniería del Transporte es_ES
dc.relation.conferencedate June 07-09,2016 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CIT/CIT2016/paper/view/3226 es_ES
dc.description.upvformatpinicio 1437 es_ES
dc.description.upvformatpfin 1444 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\3226 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem