- -

Nonlinear dynamics and chaos in an optomechanical beam

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Nonlinear dynamics and chaos in an optomechanical beam

Show full item record

Navarro-Urrios, D.; Capuj, NE.; Colombano, MF.; García, PD.; Sledzinska, M.; Alzina, F.; Griol Barres, A.... (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications. 8. doi:10.1038/ncomms14965

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/91062

Files in this item

Item Metadata

Title: Nonlinear dynamics and chaos in an optomechanical beam
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, ...[+]
Subjects: Optomechanics , Chaos , Nonlinear dynamics , Silicon photonics
Copyrigths: Reconocimiento (by)
Source:
Nature Communications. (issn: 2041-1723 )
DOI: 10.1038/ncomms14965
Publisher version: https://doi.org/10.1038/ncomms14965
Project ID: info:eu-repo/grantAgreement/EC/H2020/713450/EU
Thanks:
This work was supported by the European Comission project PHENOMEN (H2020-EU-713450), the Spanish Severo Ochoa Excellence program and the MINECO project PHENTOM (FIS2015-70862-P). DNU, PDG and MFC gratefully acknowledge ...[+]
Type: Artículo

References

Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014).

Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963).

Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982). [+]
Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014).

Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963).

Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982).

Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).

Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015).

Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008).

Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015).

Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).

Williams, C. R. et al. Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013).

Sciamanna, M. Optomechanics: vibrations copying optical chaos. Nat. Photon. 10, 366–368 (2016).

Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).

Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).

Wu, J. et al. Dynamical chaos in chip-scale optomechanical oscillators. Preprint at https://arxiv.org/abs/1608.05071 (2016).

Navarro-Urrios, D., Tredicucci, A. & Sotomayor-Torres, C. M. Coherent phonon generation in optomechanical crystals. SPIE Newsroom, doi:10.1117/2.1201507.006036 (2015).

Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5, 15733 (2015).

Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006).

Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18, 094006 (2016).

Kemiktarak, U., Durand, M., Metcalfe, M. & Lawall, J. Mode competition and anomalous cooling in a multimode phonon laser. Phys. Rev. Lett. 113, 030802 (2014).

Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).

Sprott, J. C. Chaos and Time-Series Analysis Vol. 69, Citeseer (2003).

Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).

Hoppensteadt, F. C. & Izhikevich, E. M. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Reg. Papers 48, 133–138 (2001).

Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011).

Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014).

Johnson, S. G. et al. Perturbation theory for Maxwells equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).

Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

Pennec, Y. et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics 3, 413–440 (2014).

[-]

This item appears in the following Collection(s)

Show full item record