- -

Nonlinear dynamics and chaos in an optomechanical beam

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nonlinear dynamics and chaos in an optomechanical beam

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro-Urrios, Daniel es_ES
dc.contributor.author Capuj, Nestor E. es_ES
dc.contributor.author Colombano, Martín F. es_ES
dc.contributor.author García, P. D. es_ES
dc.contributor.author Sledzinska, Marianna es_ES
dc.contributor.author Alzina, Francesc es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Martínez Abietar, Alejandro José es_ES
dc.contributor.author Sotomayor-Torres, Clivia es_ES
dc.date.accessioned 2017-11-15T11:47:37Z
dc.date.available 2017-11-15T11:47:37Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2041-1723 es_ES
dc.identifier.uri http://hdl.handle.net/10251/91062
dc.description.abstract [EN] Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two-and four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two-and four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications. es_ES
dc.description.sponsorship This work was supported by the European Comission project PHENOMEN (H2020-EU-713450), the Spanish Severo Ochoa Excellence program and the MINECO project PHENTOM (FIS2015-70862-P). DNU, PDG and MFC gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a Beatriu de Pinos postdoctoral fellowship (BP-DGR 2015 (B) and a Severo Ochoa studentship, respectively. We would like to acknowledge Jose C. Sabina de Lis, J.M. Plata Suarez, A. Trifonova and C. Masoller for fruitful discussions. en_EN
dc.language Inglés es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Optomechanics es_ES
dc.subject Chaos es_ES
dc.subject Nonlinear dynamics es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Nonlinear dynamics and chaos in an optomechanical beam es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms14965 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2015-70862-P/ES/INGENIERIA DE FONONES PARA LA GESTION TERMICA AVANZADA A LA NANOESCALA Y LA OPTOMECANICA A TEMPERATURA AMBIENTE/
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/713450/EU/All-Phononic circuits Enabled by Opto-mechanics/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Navarro-Urrios, D.; Capuj, NE.; Colombano, MF.; García, PD.; Sledzinska, M.; Alzina, F.; Griol Barres, A.... (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications. 8. https://doi.org/10.1038/ncomms14965 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/ncomms14965 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.pmid 28397813 en_EN
dc.identifier.pmcid PMC5394270 en_EN
dc.relation.pasarela S\338196 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder European Commission
dc.description.references Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014). es_ES
dc.description.references Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963). es_ES
dc.description.references Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982). es_ES
dc.description.references Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014). es_ES
dc.description.references Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005). es_ES
dc.description.references Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006). es_ES
dc.description.references Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015). es_ES
dc.description.references Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008). es_ES
dc.description.references Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015). es_ES
dc.description.references Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015). es_ES
dc.description.references Williams, C. R. et al. Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013). es_ES
dc.description.references Sciamanna, M. Optomechanics: vibrations copying optical chaos. Nat. Photon. 10, 366–368 (2016). es_ES
dc.description.references Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007). es_ES
dc.description.references Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005). es_ES
dc.description.references Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016). es_ES
dc.description.references Wu, J. et al. Dynamical chaos in chip-scale optomechanical oscillators. Preprint at https://arxiv.org/abs/1608.05071 (2016). es_ES
dc.description.references Navarro-Urrios, D., Tredicucci, A. & Sotomayor-Torres, C. M. Coherent phonon generation in optomechanical crystals. SPIE Newsroom, doi:10.1117/2.1201507.006036 (2015). es_ES
dc.description.references Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5, 15733 (2015). es_ES
dc.description.references Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006). es_ES
dc.description.references Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18, 094006 (2016). es_ES
dc.description.references Kemiktarak, U., Durand, M., Metcalfe, M. & Lawall, J. Mode competition and anomalous cooling in a multimode phonon laser. Phys. Rev. Lett. 113, 030802 (2014). es_ES
dc.description.references Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993). es_ES
dc.description.references Sprott, J. C. Chaos and Time-Series Analysis Vol. 69, Citeseer (2003). es_ES
dc.description.references Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983). es_ES
dc.description.references Hoppensteadt, F. C. & Izhikevich, E. M. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Reg. Papers 48, 133–138 (2001). es_ES
dc.description.references Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011). es_ES
dc.description.references Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014). es_ES
dc.description.references Johnson, S. G. et al. Perturbation theory for Maxwells equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002). es_ES
dc.description.references Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012). es_ES
dc.description.references Pennec, Y. et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics 3, 413–440 (2014). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem