Mostrar el registro sencillo del ítem
dc.contributor.author | Navarro-Urrios, Daniel | es_ES |
dc.contributor.author | Capuj, Nestor E. | es_ES |
dc.contributor.author | Colombano, Martín F. | es_ES |
dc.contributor.author | García, P. D. | es_ES |
dc.contributor.author | Sledzinska, Marianna | es_ES |
dc.contributor.author | Alzina, Francesc | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José | es_ES |
dc.contributor.author | Sotomayor-Torres, Clivia | es_ES |
dc.date.accessioned | 2017-11-15T11:47:37Z | |
dc.date.available | 2017-11-15T11:47:37Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 2041-1723 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/91062 | |
dc.description.abstract | [EN] Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two-and four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two-and four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications. | es_ES |
dc.description.sponsorship | This work was supported by the European Comission project PHENOMEN (H2020-EU-713450), the Spanish Severo Ochoa Excellence program and the MINECO project PHENTOM (FIS2015-70862-P). DNU, PDG and MFC gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a Beatriu de Pinos postdoctoral fellowship (BP-DGR 2015 (B) and a Severo Ochoa studentship, respectively. We would like to acknowledge Jose C. Sabina de Lis, J.M. Plata Suarez, A. Trifonova and C. Masoller for fruitful discussions. | en_EN |
dc.language | Inglés | es_ES |
dc.relation.ispartof | Nature Communications | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Optomechanics | es_ES |
dc.subject | Chaos | es_ES |
dc.subject | Nonlinear dynamics | es_ES |
dc.subject | Silicon photonics | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Nonlinear dynamics and chaos in an optomechanical beam | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/ncomms14965 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2015-70862-P/ES/INGENIERIA DE FONONES PARA LA GESTION TERMICA AVANZADA A LA NANOESCALA Y LA OPTOMECANICA A TEMPERATURA AMBIENTE/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/713450/EU/All-Phononic circuits Enabled by Opto-mechanics/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Navarro-Urrios, D.; Capuj, NE.; Colombano, MF.; García, PD.; Sledzinska, M.; Alzina, F.; Griol Barres, A.... (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications. 8. https://doi.org/10.1038/ncomms14965 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/ncomms14965 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.pmid | 28397813 | en_EN |
dc.identifier.pmcid | PMC5394270 | en_EN |
dc.relation.pasarela | S\338196 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | European Commission | |
dc.description.references | Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014). | es_ES |
dc.description.references | Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963). | es_ES |
dc.description.references | Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982). | es_ES |
dc.description.references | Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014). | es_ES |
dc.description.references | Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005). | es_ES |
dc.description.references | Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006). | es_ES |
dc.description.references | Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015). | es_ES |
dc.description.references | Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008). | es_ES |
dc.description.references | Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015). | es_ES |
dc.description.references | Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015). | es_ES |
dc.description.references | Williams, C. R. et al. Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013). | es_ES |
dc.description.references | Sciamanna, M. Optomechanics: vibrations copying optical chaos. Nat. Photon. 10, 366–368 (2016). | es_ES |
dc.description.references | Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007). | es_ES |
dc.description.references | Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005). | es_ES |
dc.description.references | Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016). | es_ES |
dc.description.references | Wu, J. et al. Dynamical chaos in chip-scale optomechanical oscillators. Preprint at https://arxiv.org/abs/1608.05071 (2016). | es_ES |
dc.description.references | Navarro-Urrios, D., Tredicucci, A. & Sotomayor-Torres, C. M. Coherent phonon generation in optomechanical crystals. SPIE Newsroom, doi:10.1117/2.1201507.006036 (2015). | es_ES |
dc.description.references | Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5, 15733 (2015). | es_ES |
dc.description.references | Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006). | es_ES |
dc.description.references | Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18, 094006 (2016). | es_ES |
dc.description.references | Kemiktarak, U., Durand, M., Metcalfe, M. & Lawall, J. Mode competition and anomalous cooling in a multimode phonon laser. Phys. Rev. Lett. 113, 030802 (2014). | es_ES |
dc.description.references | Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993). | es_ES |
dc.description.references | Sprott, J. C. Chaos and Time-Series Analysis Vol. 69, Citeseer (2003). | es_ES |
dc.description.references | Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983). | es_ES |
dc.description.references | Hoppensteadt, F. C. & Izhikevich, E. M. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Reg. Papers 48, 133–138 (2001). | es_ES |
dc.description.references | Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011). | es_ES |
dc.description.references | Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014). | es_ES |
dc.description.references | Johnson, S. G. et al. Perturbation theory for Maxwells equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002). | es_ES |
dc.description.references | Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012). | es_ES |
dc.description.references | Pennec, Y. et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics 3, 413–440 (2014). | es_ES |