Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 63(2), 503–527.
Babuska, R. (1996). Fuzzy modeling and identification. PhD dissertation, Delft University of Technology, Delft, The Netherlands.
Barcelo-Rico, F., & Diez, J. L. (2009). Comparative study of codification techniques for clustering heart disease database. Modeling and Control in Biomedical Systems, 7(1), 64–69.
[+]
Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 63(2), 503–527.
Babuska, R. (1996). Fuzzy modeling and identification. PhD dissertation, Delft University of Technology, Delft, The Netherlands.
Barcelo-Rico, F., & Diez, J. L. (2009). Comparative study of codification techniques for clustering heart disease database. Modeling and Control in Biomedical Systems, 7(1), 64–69.
Bourke, P. (1993). http://local.wasp.uwa.edu.au/ . Accessed 30 July 2010.
Brouwer, R. K. (2007). A method for fuzzy clustering with ordinal attributes. International Journal of Intelligent Systems, 22, 590–620.
Coxeter, H. S. M. (1948). Regular polytopes. Methuen.
Crossa, J., & Franco, J. (2004). Statistical methods for classifying genotypes. Euphytica, 137(1), 19–37.
de Oliveira, J. V., & Pedrycz, W. (2007). Advances in fuzzy clustering and its applications. New York: Wiley.
Diez, J. L., Navarro, J. L., & Sala, A. (2004). Algoritmos de agrupamiento en la identificacion de modelos borrosos. Revista Iberoamericana de Automática e Informática Industrial, 1(2), 32–41 (in Spanish).
Diez, J. L., Sala, A., & Navarro, J. L. (2006). Target-shaped possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence, 19, 201–208.
Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. Ed. New York, USA: Wiley.
Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of clustering methods: An empirical comparison. Data & Knowledge Engineering, 63(1), 155–166.
Goebel, M., & Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD (Explorations Newsletter), 1(1), 20–33.
Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm. Journal of the Royal Statistical Society. Series C, 28, 100–108.
He, Z., Xu, X., & Deng, S. (2005). Scalable algorithms for clustering large datasets with mixed type attributes. International Journal of Intelligent Systems, 20, 1077–1089.
Hsu, C. C., Chen, C. L., & Su, Y. W. (2007). Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences, 177(20), 4474–4492.
Huang, Z., & Ng, M. K. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446–452.
Timm, H., & Kruse, R. (1998). Fuzzy cluster analysis with missing values. In Fuzzy information processing society—NAFIPS, 1998 conference of the North American (Vol. 1).
Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for large databases. In Proc. SIGmod, 96, 103–114.
[-]