- -

Geometrical codification for clustering mixed categorical and numerical databases

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Geometrical codification for clustering mixed categorical and numerical databases

Mostrar el registro completo del ítem

Barceló Rico, F.; Diez, J. (2012). Geometrical codification for clustering mixed categorical and numerical databases. Journal of Intelligent Information Systems. 39(1):167-185. https://doi.org/10.1007/s10844-011-0187-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/93511

Ficheros en el ítem

Metadatos del ítem

Título: Geometrical codification for clustering mixed categorical and numerical databases
Autor: Barceló Rico, Fátima Diez, José-Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] This paper presents an alternative to cluster mixed databases. The main idea is to propose a general method to cluster mixed data sets, which is not very complex and still can reach similar levels of performance of ...[+]
Palabras clave: Clustering , Codification error , Data conversion , k-means , Mixed data , Categorical attributes , General method , Input matrices , k-Means algorithm , Mixed database , Spherical coordinates , Benchmarking , Database systems , Clustering algorithms
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Intelligent Information Systems. (issn: 0925-9902 )
DOI: 10.1007/s10844-011-0187-y
Editorial:
SPRINGER
Versión del editor: http://doi.org/10.1007/s10844-011-0187-y
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//DPI2007-66728-C02-01/ES/CONTROL DE GLUCEMIA EN LAZO CERRADO EN PACIENTES CON DIABETES MELLITUS 1 Y PACIENTES CRITICOS/
Agradecimientos:
The authors acknowledge the partial funding of this work by the National projects DPI2007-66728-C02-01 and DPI2008-06737-C02-01.
Tipo: Artículo

References

Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 63(2), 503–527.

Babuska, R. (1996). Fuzzy modeling and identification. PhD dissertation, Delft University of Technology, Delft, The Netherlands.

Barcelo-Rico, F., & Diez, J. L. (2009). Comparative study of codification techniques for clustering heart disease database. Modeling and Control in Biomedical Systems, 7(1), 64–69. [+]
Ahmad, A., & Dey, L. (2007). A k-mean clustering algorithm for mixed numeric and categorical data. Data & Knowledge Engineering, 63(2), 503–527.

Babuska, R. (1996). Fuzzy modeling and identification. PhD dissertation, Delft University of Technology, Delft, The Netherlands.

Barcelo-Rico, F., & Diez, J. L. (2009). Comparative study of codification techniques for clustering heart disease database. Modeling and Control in Biomedical Systems, 7(1), 64–69.

Bourke, P. (1993). http://local.wasp.uwa.edu.au/ . Accessed 30 July 2010.

Brouwer, R. K. (2007). A method for fuzzy clustering with ordinal attributes. International Journal of Intelligent Systems, 22, 590–620.

Coxeter, H. S. M. (1948). Regular polytopes. Methuen.

Crossa, J., & Franco, J. (2004). Statistical methods for classifying genotypes. Euphytica, 137(1), 19–37.

de Oliveira, J. V., & Pedrycz, W. (2007). Advances in fuzzy clustering and its applications. New York: Wiley.

Diez, J. L., Navarro, J. L., & Sala, A. (2004). Algoritmos de agrupamiento en la identificacion de modelos borrosos. Revista Iberoamericana de Automática e Informática Industrial, 1(2), 32–41 (in Spanish).

Diez, J. L., Sala, A., & Navarro, J. L. (2006). Target-shaped possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence, 19, 201–208.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification. Ed. New York, USA: Wiley.

Gelbard, R., Goldman, O., & Spiegler, I. (2007). Investigating diversity of clustering methods: An empirical comparison. Data & Knowledge Engineering, 63(1), 155–166.

Goebel, M., & Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD (Explorations Newsletter), 1(1), 20–33.

Hartigan, J. A., & Wong, M. A. (1979). A K-means clustering algorithm. Journal of the Royal Statistical Society. Series C, 28, 100–108.

He, Z., Xu, X., & Deng, S. (2005). Scalable algorithms for clustering large datasets with mixed type attributes. International Journal of Intelligent Systems, 20, 1077–1089.

Hsu, C. C., Chen, C. L., & Su, Y. W. (2007). Hierarchical clustering of mixed data based on distance hierarchy. Information Sciences, 177(20), 4474–4492.

Huang, Z., & Ng, M. K. (1999). A fuzzy k-modes algorithm for clustering categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446–452.

Timm, H., & Kruse, R. (1998). Fuzzy cluster analysis with missing values. In Fuzzy information processing society—NAFIPS, 1998 conference of the North American (Vol. 1).

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for large databases. In Proc. SIGmod, 96, 103–114.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem