Altug, H., Vuckovic, J.: Photonic crystal nanocavity array laser. Opt. Express 13, 8819–8828 (2005)
Andreev, A.V., Emel’yanov, V.I., Il’inskii, YuA: Collective spontaneous emission (Dicke superradiance). Sov. Phys. Usp. 23, 493–514 (1980)
Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt, New York (1976)
[+]
Altug, H., Vuckovic, J.: Photonic crystal nanocavity array laser. Opt. Express 13, 8819–8828 (2005)
Andreev, A.V., Emel’yanov, V.I., Il’inskii, YuA: Collective spontaneous emission (Dicke superradiance). Sov. Phys. Usp. 23, 493–514 (1980)
Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt, New York (1976)
Boggess, T.F., Klaus, J.R., Bohnert, M., Mansour, K., Moss, S.C., Boyd, I.W., Smirl, A.L.: Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon. IEEE J. Quantum Electron. 22, 360–368 (1986)
Chen, M.J., Tsai, C.S., Wu, M.K.: Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors. Jpn. J. Appl. Phys. 45, 6576–6588 (2006)
Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)
Escalante, J.M., Martínez, A.: Theoretical study about the gain in indirect bandgap semiconductor optical cavities. Physica B 407, 2044–2049 (2012)
Escalante, J.M., Martínez, A.: Theoretical study about the relations among coefficients of stimulated emission, spontaneous emission and absorption in indirect bandgap semiconductor. Physica B 411, 52–55 (2013)
Fox, M.: Quantum Optics: An Introduction. Oxford UP, Oxford (2006)
Fujita, M., Tanaka, Y., Noda, S.: Light emission from silicon in photonic crystal nanocavity. IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008)
Hofmann, M., Schmidt, C., Kohn, N., Rentsch, J., Glunz, S.W., Preu, R.: Stack system of PECVD amorphous silicon and PECVD silicon oxide for silicon solar cell rear side passivation. Prog. Photovoltaics 16, 509–518 (2008)
Iwamoto, S., Arakawa, Y., Gomyo, A.: Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Appl. Phys. Lett. 91, 211104 (2007)
Kittel, C.: Introduccion to Solid State Physics, 8th edn. Wiley, New York (2004)
Lanzilloti-Kimura, N.D., Fainstein, A., Perrin, B., Jusserand, B., Soukiassian, A., Xi, X.X., Schlom, D.G.: Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys. Rev. Lett. 104, 197402 (2010)
Lipson, M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)
Nakayama, S., Ishida, S., Iwamoto, S., Arakawa, Y.: Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities. Appl. Phys. Lett. 98, 171102 (2011)
Pavesi, L., Lockwood, D.J.: Silicon Photonics. Springer, New York (2004)
Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)
Reed, G.T., Knights, A.P.: Silicon Photonics: An Introduction. John Wiley, West Sussex (2004)
Sturm, J.C., Reaves, C.M.: Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects. IEEE Trans. Electron Dev. 39, 81–88 (1992)
Svantesson, K.G., Nilsson, N.G.: Determination of the temperature dependence of the free carrier and interband absorption in silicon at 1.06 $$\mu $$ μ m. J. Phys. C Solid State Phys. 12, 3837–3842 (1977)
Ternon, C., Gourbilleau, F., Portier, X., Voivenel, P., Dufour, C.: An original approach for the fabrication of $$\text{ Si/SiO }_{2}$$ Si/SiO 2 multilayers using reactive magnetron sputtering. Thin Solid Films 419, 5–10 (2002)
Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B., Thierry-Mieg, V.: Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002)
Trupke, T., Green, M.A., Wurfel, P.: Optical gain in materials with indirect transitions. J. Appl. Phys. 93, 9058–9061 (2003a)
Trupke, T., Zhao, J., Wang, A., Corkish, R., Green, M.A.: Very efficient light emission from bulk crystalline silicon. Appl. Phys. Lett. 82, 2996–2998 (2003b)
Tsai, C.-Y.: Theoretical model for the optical gain coefficient of indirect-band-gap semiconductors. J. Appl. Phys. 99, 053506 (2006)
Zadernovskii, A.A., Rivlin, L.A.: Stimulated two-quantum photon-phonon transitions in indirect-gap semiconductors. Sov. J. Quantum Electron. 21, 255–260 (1991)
Zadernovskii, A.A., Rivlin, L.A.: Photon-phonon laser action in indirect-gap semiconductors. Quantum Electron. 23, 300–308 (1993)
[-]