Mostrar el registro sencillo del ítem
dc.contributor.author | Escalante Fernández, José María![]() |
es_ES |
dc.contributor.author | Martínez Abietar, Alejandro José![]() |
es_ES |
dc.date.accessioned | 2018-01-11T09:22:18Z | |
dc.date.available | 2018-01-11T09:22:18Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 0306-8919 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/94458 | |
dc.description.abstract | [EN] Optical gain that could ultimately lead to light emission from silicon is a goal that has been pursued for a long time by the scientific community. The reason is that a silicon laser would allow for the development of low-cost, high-volume monolithic photonic integrated circuits created using conventional CMOS technologies. However, the silicon indirect bandgap-requiring the participation of a proper phonon in the process of light emission-is a roadblock that has not been overcome so far. A high-Q optical cavity allowing a very high density of states at the desired frequencies has been proposed as a possible way to get optical gain. However, recent theoretical studies have shown that the free-carrier absorption is much higher than the optical gain at ambient temperature in an indirect bandgap semiconductor, even if a high-Q optical cavity is formed. In this work, we consider a particular case in which the semiconductor material is engineered to form an acousto-optical cavity where the photon and phonon modes involved in the emission process are simultaneously confined. The acousto-optical cavity confinement effect on the light emission properties is characterized by a compound Purcell factor which includes both the optical as well as the acoustic Purcell factor (APF). A theoretical expression for the APF is also introduced. Our theoretical results suggest that creating an acousto-optical cavity the optical gain can overcome the photon loss due to free carriers as a consequence of the localization of phonons even at room temperature, paving the way towards the pursued silicon laser. | es_ES |
dc.description.sponsorship | This research has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 233883 (TAILPHOX). | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Optical and Quantum Electronics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Optical gain | es_ES |
dc.subject | Indirect bandgap semiconductor | es_ES |
dc.subject | Optical cavity | es_ES |
dc.subject | Purcell factor | es_ES |
dc.subject | Silicon laser | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Optical gain by simultaneous photon and phonon confinement in indirect bandgap semiconductor acousto-optical cavities | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11082-013-9715-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/233883/EU/TAILoring photon-phonon interaction in silicon PHOXonic crystals/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Escalante Fernández, JM.; Martínez Abietar, AJ. (2013). Optical gain by simultaneous photon and phonon confinement in indirect bandgap semiconductor acousto-optical cavities. Optical and Quantum Electronics. 45(10):1045-1056. https://doi.org/10.1007/s11082-013-9715-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11082-013-9715-z | es_ES |
dc.description.upvformatpinicio | 1045 | es_ES |
dc.description.upvformatpfin | 1056 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 45 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\247035 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Altug, H., Vuckovic, J.: Photonic crystal nanocavity array laser. Opt. Express 13, 8819–8828 (2005) | es_ES |
dc.description.references | Andreev, A.V., Emel’yanov, V.I., Il’inskii, YuA: Collective spontaneous emission (Dicke superradiance). Sov. Phys. Usp. 23, 493–514 (1980) | es_ES |
dc.description.references | Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Harcourt, New York (1976) | es_ES |
dc.description.references | Boggess, T.F., Klaus, J.R., Bohnert, M., Mansour, K., Moss, S.C., Boyd, I.W., Smirl, A.L.: Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon. IEEE J. Quantum Electron. 22, 360–368 (1986) | es_ES |
dc.description.references | Chen, M.J., Tsai, C.S., Wu, M.K.: Optical gain and co-stimulated emissions of photons and phonons in indirect bandgap semiconductors. Jpn. J. Appl. Phys. 45, 6576–6588 (2006) | es_ES |
dc.description.references | Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954) | es_ES |
dc.description.references | Escalante, J.M., Martínez, A.: Theoretical study about the gain in indirect bandgap semiconductor optical cavities. Physica B 407, 2044–2049 (2012) | es_ES |
dc.description.references | Escalante, J.M., Martínez, A.: Theoretical study about the relations among coefficients of stimulated emission, spontaneous emission and absorption in indirect bandgap semiconductor. Physica B 411, 52–55 (2013) | es_ES |
dc.description.references | Fox, M.: Quantum Optics: An Introduction. Oxford UP, Oxford (2006) | es_ES |
dc.description.references | Fujita, M., Tanaka, Y., Noda, S.: Light emission from silicon in photonic crystal nanocavity. IEEE J. Sel. Top. Quantum Electron. 14, 1090–1097 (2008) | es_ES |
dc.description.references | Hofmann, M., Schmidt, C., Kohn, N., Rentsch, J., Glunz, S.W., Preu, R.: Stack system of PECVD amorphous silicon and PECVD silicon oxide for silicon solar cell rear side passivation. Prog. Photovoltaics 16, 509–518 (2008) | es_ES |
dc.description.references | Iwamoto, S., Arakawa, Y., Gomyo, A.: Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Appl. Phys. Lett. 91, 211104 (2007) | es_ES |
dc.description.references | Kittel, C.: Introduccion to Solid State Physics, 8th edn. Wiley, New York (2004) | es_ES |
dc.description.references | Lanzilloti-Kimura, N.D., Fainstein, A., Perrin, B., Jusserand, B., Soukiassian, A., Xi, X.X., Schlom, D.G.: Bloch oscillations of THz acoustic phonons in coupled nanocavity structures. Phys. Rev. Lett. 104, 197402 (2010) | es_ES |
dc.description.references | Lipson, M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005) | es_ES |
dc.description.references | Nakayama, S., Ishida, S., Iwamoto, S., Arakawa, Y.: Effect of cavity mode volume on photoluminescence from silicon photonic crystal nanocavities. Appl. Phys. Lett. 98, 171102 (2011) | es_ES |
dc.description.references | Pavesi, L., Lockwood, D.J.: Silicon Photonics. Springer, New York (2004) | es_ES |
dc.description.references | Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946) | es_ES |
dc.description.references | Reed, G.T., Knights, A.P.: Silicon Photonics: An Introduction. John Wiley, West Sussex (2004) | es_ES |
dc.description.references | Sturm, J.C., Reaves, C.M.: Silicon temperature measurement by infrared absorption. Fundamental processes and doping effects. IEEE Trans. Electron Dev. 39, 81–88 (1992) | es_ES |
dc.description.references | Svantesson, K.G., Nilsson, N.G.: Determination of the temperature dependence of the free carrier and interband absorption in silicon at 1.06 $$\mu $$ μ m. J. Phys. C Solid State Phys. 12, 3837–3842 (1977) | es_ES |
dc.description.references | Ternon, C., Gourbilleau, F., Portier, X., Voivenel, P., Dufour, C.: An original approach for the fabrication of $$\text{ Si/SiO }_{2}$$ Si/SiO 2 multilayers using reactive magnetron sputtering. Thin Solid Films 419, 5–10 (2002) | es_ES |
dc.description.references | Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B., Thierry-Mieg, V.: Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002) | es_ES |
dc.description.references | Trupke, T., Green, M.A., Wurfel, P.: Optical gain in materials with indirect transitions. J. Appl. Phys. 93, 9058–9061 (2003a) | es_ES |
dc.description.references | Trupke, T., Zhao, J., Wang, A., Corkish, R., Green, M.A.: Very efficient light emission from bulk crystalline silicon. Appl. Phys. Lett. 82, 2996–2998 (2003b) | es_ES |
dc.description.references | Tsai, C.-Y.: Theoretical model for the optical gain coefficient of indirect-band-gap semiconductors. J. Appl. Phys. 99, 053506 (2006) | es_ES |
dc.description.references | Zadernovskii, A.A., Rivlin, L.A.: Stimulated two-quantum photon-phonon transitions in indirect-gap semiconductors. Sov. J. Quantum Electron. 21, 255–260 (1991) | es_ES |
dc.description.references | Zadernovskii, A.A., Rivlin, L.A.: Photon-phonon laser action in indirect-gap semiconductors. Quantum Electron. 23, 300–308 (1993) | es_ES |