- -

Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation

Show full item record

Landi, SJ.; Carneiro, J.; Fernandes, F.; Parpot, P.; Molina Puerto, J.; Cases, F.; Fernández Sáez, J.... (2017). Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation. Water Air & Soil Pollution. 228(335). doi:10.1007/s11270-017-3533-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/94882

Files in this item

Item Metadata

Title: Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Issued date:
Embargo end date: 2018-09-28
Abstract:
[EN] Reduced graphene oxide (RGO) and titanium dioxide (TiO2) nanoparticles were immobilized on cotton textile substrates to produce self-cleaning textiles. Varying number of layers of RGO andTiO(2) nanoparticles were ...[+]
Subjects: Rhodamine B , Reduced graphene oxide , Titanium dioxide , Photocatalysis
Copyrigths: Reserva de todos los derechos
Source:
Water Air & Soil Pollution. (issn: 0049-6979 )
DOI: 10.1007/s11270-017-3533-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11270-017-3533-z
Thanks:
S. Landi Jr. expresses his gratitude to the Brazilian Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for sporting his Doctoral Fellowship performed in Physics Centre at University of Minho. J. Molina ...[+]
Type: Artículo

References

Abdel-Messih, M. F., Ahmed, M. A., & El-Sayed, A. S. (2013). Photocatalytic decolorization of rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 260, 1–8.

Blanton, T. N., & Majumdar, D. (2012). X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffraction, 27(2), 104–107.

Carneiro, J. O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C. J., Lanceros-Méndez, S., & Teixeira, V. (2014). Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. Journal of Materials Science, 49, 7476–7488. [+]
Abdel-Messih, M. F., Ahmed, M. A., & El-Sayed, A. S. (2013). Photocatalytic decolorization of rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 260, 1–8.

Blanton, T. N., & Majumdar, D. (2012). X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffraction, 27(2), 104–107.

Carneiro, J. O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C. J., Lanceros-Méndez, S., & Teixeira, V. (2014). Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. Journal of Materials Science, 49, 7476–7488.

Chang, C. T., Wang, J. J., Ouyang, T., Zhang, Q., & Jing, Y. H. (2015). Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 196, 53–60.

Chen, C., Zhao, W., Lei, P., Zhao, J., & Serpone, N. (2004). Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chemistry - A European Journal, 10, 1956–1965.

Chen, C., Ma, W., & Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39(11), 4206–4219.

Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.

Ebejer, N., Güell, A. G., Lai, S. C. S., McKelvey, K., Snowden, M. E., & Unwin, P. R. (2013). Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annual Review of Analytical Chemistry, 6, 329–351.

Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403–408.

Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9(1), 1–12.

Gu, Y., Xing, M., & Zhang, J. (2014). Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Applied Surface Science, 319, 8–15.

He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182, 132–141.

Hea, C., Denga, C., Wanga, J., Gua, X., Wua, T., Zhub, K., & Liu, Y. (2016). Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3–BaTiO3 single crystals. Physica B: Condensed Matter, 483, 44–47.

Hua, W., You, T., Shi, W., Li, J., & Lin, G. (2012). Au/TiO2/Au as a plasmonic coupling photocatalyst. Journal of Physical Chemistry C, 116(10), 6490–6494.

Janin, T., Goetz, V., Brosillon, S., & Plantard, G. (2013). Solar photocatalytic mineralization of 2,4-dichlorophenol and mixtures of pesticides: kinetic model of mineralization. Solar Energy, 87, 127–135.

Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813–3827.

Khan, A. F., Mehmood, M., Durrani, S. K., Ali, M. L., & Rahim, N. A. (2014). Structural and optoelectronic properties of nanostructured TiO2 thin films with annealing. Materials Science in Semiconductor Processing, 29, 161–169.

Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry. A, 115(46), 13211–13241.

Lee, W., Lee, J. U., Jung, B. M., Byun, J.-H., Yi, J.-W., Lee, S.-B., & Kim, B.-S. (2013a). Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon, 65, 296–304.

Lee, H., Park, S. H., Park, Y.-K., Kim, B. H., Kim, S.-J., & Jung, S.-C. (2013b). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chemistry Central Journal, 7, 156.

Molina, J. (2016). Graphene-based fabrics and their applications: a review. RSC Advances, 6, 68261–68291.

Molina, J., Fernández, J., Inés, J. C., del Río, A. I., Bonastre, J., & Cases, F. (2013). Electrochemical characterization of reduced graphene oxide-coated polyester fabrics. Electrochimica Acta, 93, 44–52.

Molina, J., Fernandes, F., Fernández, J., Pastor, M., Correia, A., Souto, A. P., Carneiro, J. O., Teixeira, V., & Cases, F. (2015). Photocatalytic fabrics based on reduced graphene oxide and TiO2 coatings. Materials Science and Engineering B, 199, 62–76.

Molina, J., Fernández, J., & Cases, F. (2016). Scanning electrochemical microscopy for the analysis and patterning of graphene materials: a review. Synthetic Metals, 222, 145–161.

Nguyen-Phan, T. D., Pham, V. H., Shin, E. W., Pham, H. D., Kim, S., Chung, J. S., Kim, E. J., & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226–232.

Pakdel, E., & Daoud, W. A. (2013). Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. Journal of Colloid and Interface Science, 401, 1–7.

Sun, P., Laforge, F. O., & Mirkin, M. V. (2007). Scanning electrochemical microscopy in the 21st century. Physical Chemistry Chemical Physics, 9, 802–823.

Valencia, S., Marin, J. M., & Restrepo, G. (2010). Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J., 4, 9–14.

Wu, T.X., Liu, G.M., , Hidaka, H., and Serpone, N. (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. The Journal of Physical Chemistry. B, 102 (30), 5845–5851.

Xu, B., Ding, J., Feng, L., Ding, Y., Ge, F., & Cai, Z. (2015). Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surface and Coatings Technology, 262, 70–76.

Zhang, Y., & Pan, C. (2011). TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 46, 2622–2626.

Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380–386.

Zhao, D., Chen, C., Wang, Y., Ma, W., Zhao, J., Rajh, T., & Zang, L. (2007). Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al (III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environmental Science & Technology, 42(1), 308–314.

Zhao, K., Feng, L., Lin, H., Fu, Y., Lin, B., Cui, W., Li, S., & Wei, J. (2014). Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catalysis Today, 236, 127–134.

Zhu, W., Zeng, C., Zheng, J. P., Liang, R., Zhang, C., & Wang, B. (2011). Preparation of Buckypaper supported Pt catalyst for PEMFC using a supercritical fluid method. Electrochemical and Solid-State Letters, 14(8), B81–B83.

[-]

This item appears in the following Collection(s)

Show full item record