- -

Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Landi, S., Jr. es_ES
dc.contributor.author Carneiro, J.O. es_ES
dc.contributor.author Fernandes, F. es_ES
dc.contributor.author Parpot, P. es_ES
dc.contributor.author Molina Puerto, Javier es_ES
dc.contributor.author Cases, F. es_ES
dc.contributor.author Fernández Sáez, Javier es_ES
dc.contributor.author Santos, J.G. es_ES
dc.contributor.author Soares, G.M.B. es_ES
dc.contributor.author Teixeira, V. es_ES
dc.contributor.author Samantilleke, A.P. es_ES
dc.date.accessioned 2018-01-16T09:18:47Z
dc.date.available 2018-01-16T09:18:47Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0049-6979 es_ES
dc.identifier.uri http://hdl.handle.net/10251/94882
dc.description.abstract [EN] Reduced graphene oxide (RGO) and titanium dioxide (TiO2) nanoparticles were immobilized on cotton textile substrates to produce self-cleaning textiles. Varying number of layers of RGO andTiO(2) nanoparticles were coated by a facile method, and their photocatalytic potential was evaluated by measuring the degradation rate of rhodamine B (Rh-B) in an aqueous solution in a photoreactor under simulated solar irradiation. X-ray diffraction (XRD) and zeta potential measurements of starting materials were studied as they are crucial for innovative methods of functionalization. The study confirms that it is possible to ensure a good adhesion of nanoparticles on textile samples without the use of a resin. The application of varying number of RGO and TiO2 coatings has influence on photocatalytic properties of functionalized cotton textile substrates. The energy band gap of the samples reduces from 3.25 to -3.20 eV with the number of RGO coatings. All five de-ethylated intermediates of Rh-B during the photocatalytic degradation were identified using a high-performance liquid chromatography-mass spectrometry method. The experimental results show that, in general, the higher the number of RGO coatings is, the higher the photocatalytic efficiency (eta) of the functionalized substrate is (eta= 87% for three RGO coatings on TiO2). es_ES
dc.description.sponsorship S. Landi Jr. expresses his gratitude to the Brazilian Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for sporting his Doctoral Fellowship performed in Physics Centre at University of Minho. J. Molina wishes to thank the Spanish Ministerio de Ciencia e Innovacion (contract CTM2011-23583) for the financial support. Moreover, the authors still want to thank the Portuguese Foundation for Science and Technology (FCT) for its contribution in financial support of this research work. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Water Air & Soil Pollution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Rhodamine B es_ES
dc.subject Reduced graphene oxide es_ES
dc.subject Titanium dioxide es_ES
dc.subject Photocatalysis es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11270-017-3533-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-77742-C2-1-P/ES/DESARROLLO DE MATERIALES POROSOS 2D Y 3D CON APLICACIONES ELECTROQUIMICAS, CATALITICAS, TERMICAS Y BIOMEDICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-23583/ES/DESARROLLO DE NUEVOS MATERIALES ELECTRODICOS BASADOS EN RECUBRIMIENTOS DE ICP Y PT, CON APLICACION EN EL TRATAMIENTO ELECTROQUIMICO DE AGUAS RESIDUALES TEXTILES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-09-28 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Landi, SJ.; Carneiro, J.; Fernandes, F.; Parpot, P.; Molina Puerto, J.; Cases, F.; Fernández Sáez, J.... (2017). Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation. Water Air & Soil Pollution. 228(335). https://doi.org/10.1007/s11270-017-3533-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11270-017-3533-z es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 228 es_ES
dc.description.issue 335 es_ES
dc.relation.pasarela S\341881 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Abdel-Messih, M. F., Ahmed, M. A., & El-Sayed, A. S. (2013). Photocatalytic decolorization of rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 260, 1–8. es_ES
dc.description.references Blanton, T. N., & Majumdar, D. (2012). X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffraction, 27(2), 104–107. es_ES
dc.description.references Carneiro, J. O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C. J., Lanceros-Méndez, S., & Teixeira, V. (2014). Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. Journal of Materials Science, 49, 7476–7488. es_ES
dc.description.references Chang, C. T., Wang, J. J., Ouyang, T., Zhang, Q., & Jing, Y. H. (2015). Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 196, 53–60. es_ES
dc.description.references Chen, C., Zhao, W., Lei, P., Zhao, J., & Serpone, N. (2004). Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chemistry - A European Journal, 10, 1956–1965. es_ES
dc.description.references Chen, C., Ma, W., & Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39(11), 4206–4219. es_ES
dc.description.references Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240. es_ES
dc.description.references Ebejer, N., Güell, A. G., Lai, S. C. S., McKelvey, K., Snowden, M. E., & Unwin, P. R. (2013). Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annual Review of Analytical Chemistry, 6, 329–351. es_ES
dc.description.references Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403–408. es_ES
dc.description.references Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9(1), 1–12. es_ES
dc.description.references Gu, Y., Xing, M., & Zhang, J. (2014). Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Applied Surface Science, 319, 8–15. es_ES
dc.description.references He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182, 132–141. es_ES
dc.description.references Hea, C., Denga, C., Wanga, J., Gua, X., Wua, T., Zhub, K., & Liu, Y. (2016). Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3–BaTiO3 single crystals. Physica B: Condensed Matter, 483, 44–47. es_ES
dc.description.references Hua, W., You, T., Shi, W., Li, J., & Lin, G. (2012). Au/TiO2/Au as a plasmonic coupling photocatalyst. Journal of Physical Chemistry C, 116(10), 6490–6494. es_ES
dc.description.references Janin, T., Goetz, V., Brosillon, S., & Plantard, G. (2013). Solar photocatalytic mineralization of 2,4-dichlorophenol and mixtures of pesticides: kinetic model of mineralization. Solar Energy, 87, 127–135. es_ES
dc.description.references Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813–3827. es_ES
dc.description.references Khan, A. F., Mehmood, M., Durrani, S. K., Ali, M. L., & Rahim, N. A. (2014). Structural and optoelectronic properties of nanostructured TiO2 thin films with annealing. Materials Science in Semiconductor Processing, 29, 161–169. es_ES
dc.description.references Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry. A, 115(46), 13211–13241. es_ES
dc.description.references Lee, W., Lee, J. U., Jung, B. M., Byun, J.-H., Yi, J.-W., Lee, S.-B., & Kim, B.-S. (2013a). Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon, 65, 296–304. es_ES
dc.description.references Lee, H., Park, S. H., Park, Y.-K., Kim, B. H., Kim, S.-J., & Jung, S.-C. (2013b). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chemistry Central Journal, 7, 156. es_ES
dc.description.references Molina, J. (2016). Graphene-based fabrics and their applications: a review. RSC Advances, 6, 68261–68291. es_ES
dc.description.references Molina, J., Fernández, J., Inés, J. C., del Río, A. I., Bonastre, J., & Cases, F. (2013). Electrochemical characterization of reduced graphene oxide-coated polyester fabrics. Electrochimica Acta, 93, 44–52. es_ES
dc.description.references Molina, J., Fernandes, F., Fernández, J., Pastor, M., Correia, A., Souto, A. P., Carneiro, J. O., Teixeira, V., & Cases, F. (2015). Photocatalytic fabrics based on reduced graphene oxide and TiO2 coatings. Materials Science and Engineering B, 199, 62–76. es_ES
dc.description.references Molina, J., Fernández, J., & Cases, F. (2016). Scanning electrochemical microscopy for the analysis and patterning of graphene materials: a review. Synthetic Metals, 222, 145–161. es_ES
dc.description.references Nguyen-Phan, T. D., Pham, V. H., Shin, E. W., Pham, H. D., Kim, S., Chung, J. S., Kim, E. J., & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226–232. es_ES
dc.description.references Pakdel, E., & Daoud, W. A. (2013). Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. Journal of Colloid and Interface Science, 401, 1–7. es_ES
dc.description.references Sun, P., Laforge, F. O., & Mirkin, M. V. (2007). Scanning electrochemical microscopy in the 21st century. Physical Chemistry Chemical Physics, 9, 802–823. es_ES
dc.description.references Valencia, S., Marin, J. M., & Restrepo, G. (2010). Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J., 4, 9–14. es_ES
dc.description.references Wu, T.X., Liu, G.M., , Hidaka, H., and Serpone, N. (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. The Journal of Physical Chemistry. B, 102 (30), 5845–5851. es_ES
dc.description.references Xu, B., Ding, J., Feng, L., Ding, Y., Ge, F., & Cai, Z. (2015). Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surface and Coatings Technology, 262, 70–76. es_ES
dc.description.references Zhang, Y., & Pan, C. (2011). TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 46, 2622–2626. es_ES
dc.description.references Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380–386. es_ES
dc.description.references Zhao, D., Chen, C., Wang, Y., Ma, W., Zhao, J., Rajh, T., & Zang, L. (2007). Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al (III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environmental Science & Technology, 42(1), 308–314. es_ES
dc.description.references Zhao, K., Feng, L., Lin, H., Fu, Y., Lin, B., Cui, W., Li, S., & Wei, J. (2014). Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catalysis Today, 236, 127–134. es_ES
dc.description.references Zhu, W., Zeng, C., Zheng, J. P., Liang, R., Zhang, C., & Wang, B. (2011). Preparation of Buckypaper supported Pt catalyst for PEMFC using a supercritical fluid method. Electrochemical and Solid-State Letters, 14(8), B81–B83. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem