Mostrar el registro sencillo del ítem
dc.contributor.author | Reig Valor, Carmina | es_ES |
dc.contributor.author | Grillone, Nicola | es_ES |
dc.contributor.author | Mesejo Conejos, Carlos | es_ES |
dc.contributor.author | Martínez Fuentes, Amparo | es_ES |
dc.contributor.author | Agustí Fonfría, Manuel | es_ES |
dc.date.accessioned | 2018-01-30T06:53:20Z | |
dc.date.available | 2018-01-30T06:53:20Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0721-7595 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/96046 | |
dc.description.abstract | [EN] In Rosaceae fruit tree species, fruit and roots grow opposite because of carbohydrate competition, and root activity is thus reduced by fruit growth. In agreement with this, for some of these species soil temperature has been suggested as a factor regulating fruit ripening, but the mechanism with which it works remains unknown. In this study, we reduced loquat root activity by lowering soil temperature, expecting faster fruit growth and advanced fruit ripening. Eight 4-year-old 'Algerie' loquat trees, budded onto seedling rootstock, and grown outdoors in 39-l plastic containers filled with sandy-loamy soil were used. The roots of four trees were cooled by placing the containers in a cooling compartment (9.5 A degrees C), whereas those of the other four trees were maintained at air temperature (16.5 A degrees C). We measured lateral root primordia emergence, fruit diameter and fruit color development, carbohydrates and nitrogen partitioning, as well as GA, CK, IAA, ABA, and JA content. Lowering soil temperature increased carbohydrate translocation to the fruit and reduced root N uptake and translocation to both the canopy and the fruit. Changes in plant hormones were also caused by reduced soil temperature, and fruit color advanced. Loquat fruit ripened 8-10 days earlier when soil temperature was reduced to 9.5 A degrees C. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Plant Growth Regulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbohydrates | es_ES |
dc.subject | Lateral root primordia | es_ES |
dc.subject | Nitrogen | es_ES |
dc.subject | Plant hormones | es_ES |
dc.subject | Ripening | es_ES |
dc.subject | Root cooling | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Soil Temperature Regulates Fruit Color Change in Algerie Loquat: Nutritional and Hormonal Control | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00344-016-9608-z | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Reig Valor, C.; Grillone, N.; Mesejo Conejos, C.; Martinez Fuentes, A.; Agustí Fonfría, M. (2016). Soil Temperature Regulates Fruit Color Change in Algerie Loquat: Nutritional and Hormonal Control. Journal of Plant Growth Regulation. 35(4):1108-1117. doi:10.1007/s00344-016-9608-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00344-016-9608-z | es_ES |
dc.description.upvformatpinicio | 1108 | es_ES |
dc.description.upvformatpfin | 1117 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\316420 | es_ES |
dc.description.references | Agustí M, Guardiola JL, Almela V (1981) The regulation of fruit cropping in mandarins through the use of growth regulators. Proc Int Soc Citricult 1:216–220 | es_ES |
dc.description.references | AOAC (2005) Official methods of analysis of the association of official analytical chemists, 14th edn. AOAC, Arlington, pp 611–613 | es_ES |
dc.description.references | Bryla DR, Bouma TJ, Hartmond U, Eissenstat DM (2001) Influence of temperature and soil drying on respiration of individual roots in citrus: integrating greenhouse observations into a predictive model for the field. Plant Cell Environ 24:781–790 | es_ES |
dc.description.references | Canellas LP, Lopes F, Okorokova-Façanha AL, Rocha A (2002) Humic acid isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol 130:1951–1957 | es_ES |
dc.description.references | Coggins CW Jr (1981) The influence of exogenous growth regulators on rind quality and internal quality of citrus fruits. Proc Int Soc Citriculture 1:214–216 | es_ES |
dc.description.references | Ebel RC, Proebsting EL, Patterson ME (1993) Regulated deficit irrigation may alter apple maturity, quality, and storage life. HortScience 28:141–143 | es_ES |
dc.description.references | Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13:241–273 | es_ES |
dc.description.references | Gambetta G, Martínez-Fuentes A, Betancur O, Mesejo C, Reig C, Gravina A, Agustí M (2012) Hormonal and nutritional changes in the flavedo regulating rind color development in sweet orange [Citrus sinensis (L.) Osb.]. J Plant Growth Regul 31:273–282 | es_ES |
dc.description.references | Gross J, Bazak H, Blumenfeld A (1984) Changes in chlorophyll and carotenoid pigments in the peel of ‘Triumph’ persimmon (Diospyros kaki L.) induced by pre-harvest gibberellin (GA3) treatment. Sci Hortic 24:305–314 | es_ES |
dc.description.references | Iglesias DJ, Tadeo FR, Legaz F, Primo-Millo E, Talón M (2001) In vivo sucrose stimulation of color change in citrus fruit epicarps: interactions between nutritional and hormonal signals. Physiol Plant 112:244–250 | es_ES |
dc.description.references | Jiang K, Feldman LJ (2003) Root meristem establishment and maintenance: the role of auxin. J Plant Growth Regul 21:432–440 | es_ES |
dc.description.references | Kondo S, Tomiyama A, Seto H (2000) Changes of endogenous jasmonic acid and methyl jasmonate in apples and sweet cherries during fruit development. J Am Soc Hortic Sci 125:282–287 | es_ES |
dc.description.references | Kondo S, Ponrod W, Kanlayanarat S, Hirai N (2002) Abscisic acid metabolism during fruit development and maturation of mangosteens. J Am Soc Hortic Sci 127:737–741 | es_ES |
dc.description.references | Krauss A (1985) Interaction of nitrogen nutrition, phytohormones and tuberization. In: Li PH (ed) Potato physiology. Academic Press, London, pp 209–231 | es_ES |
dc.description.references | Letham DS (1994) Cytokinins and phytohormones—sites of biosynthesis, translocation and function of translocated cytokinin. In: Mok DW, Mok MC (eds) Cytokinins-chemistry, activity, and function. CRC Press, Boca Raton, pp 57–80 | es_ES |
dc.description.references | Lou H, Chen P, Zheng H, Xu C, Lu H (2012) Effect of kinetin on quality and harvest date of loquat fruit. Afr J Agric Res 7:1577–1583 | es_ES |
dc.description.references | Manning K (1993) Soft fruit. In: Seymour JB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 347–378 | es_ES |
dc.description.references | Mesejo C, Gambetta G, Gravina A, Martínez-Fuentes A, Reig C, Agustí M (2011) Relationship between soil temperature and fruit color development of ‘Clemenpons’ Clementine mandarin (Citrus clementina Hort ex. Tan). J Sci Food Agric 92:520–525 | es_ES |
dc.description.references | Myers SC (1992) Root restriction of apple and peach in in-ground fabric containers. Acta Hortic 322:215–219 | es_ES |
dc.description.references | Noodén LD (1988) The phenomena of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 1–50 | es_ES |
dc.description.references | Quiñones A, Legaz F (2006) Nutrición mineral. Fertilización. In: Agustí M, Reig C, Undurraga P (eds) El cultivo del níspero japonés. Alcoy, Gráficas Alcoy, pp 131–162 | es_ES |
dc.description.references | Raigón MD, Pérez-García M, Maquieira A, Puchades R (1992) Determination of available nitrogen (nitric and ammoniacal) in soils by flow injection analysis. Analysis 20:483–487 | es_ES |
dc.description.references | Reig C, Mesejo C, Martínez-Fuentes A, Iglesias DJ, Agustí M (2013) Fruit load and root development in field-grown loquat trees (Eriobotrya japonica Lindl.). J Plant Growth Regul 32:281–290 | es_ES |
dc.description.references | Reig C, Mesejo C, Martínez-Fuentes A, Martínez-Alcántara B, Agustí M (2015) Loquat fruit ripening is associated with root depletion. Nutritional and hormonal control. J Plant Physiol 177:51–59 | es_ES |
dc.description.references | Reig C, Martínez-Fuentes A, Mesejo C, Rodrigo MJ, Zacarías L, Agustí M (2016) Loquat fruit lacks a ripening-associated autocatalytic rise in ethylene production. J Plant Growth Regul 35:232–244 | es_ES |
dc.description.references | Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651 | es_ES |
dc.description.references | Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449 | es_ES |
dc.description.references | Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111 | es_ES |
dc.description.references | Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. In Vitro Symp Soc Exp Biol 11:118–131 | es_ES |
dc.description.references | Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Phys 132:805–810 | es_ES |
dc.description.references | Wang H, Huang H, Huang Y (2007) Differential effects of abscisic acid and ethylene of the fruit maturation of Litchi chinensis Sonn. Plant Growth Regul 52:189–198 | es_ES |
dc.description.references | Young LB, Erickson LC (1961) Influence of temperature on color change in Valencia oranges. Proc Am Soc Hortic Sci 78:197–200 | es_ES |