- -

Sugar-and-acid profile of Penjar tomatoes and its evolution during storage

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sugar-and-acid profile of Penjar tomatoes and its evolution during storage

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casals Missio, Joan es_ES
dc.contributor.author Martí-Renau, Raul es_ES
dc.contributor.author Casañas Artigas, Francesc es_ES
dc.contributor.author Cebolla Cornejo, Jaime es_ES
dc.date.accessioned 2018-02-06T08:38:51Z
dc.date.available 2018-02-06T08:38:51Z
dc.date.issued 2015 es_ES
dc.identifier.issn 0103-9016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97083
dc.description.abstract [EN] The alcobaça mutation in the Penjar tomato (Solanum lycopersicum L.) variety alters the ripening process and confers a long shelf life (more than four months). Storage of Penjar tomatoes leads to a distinctive sensory profile valued by local consumers, who prefer aged tomatoes to fresh ones. To study chemical changes occurring during storage, we characterized the complete sugar-and-acid profile of 25 accessions at harvest and at 2 and 4 months after harvest. We found considerable variability in the sugar-and-acid profile within the Penjar variety, especially for fructose and glucose. Some accessions presented exceptionally high values for sugars, making them especially interesting for breeding programs. During postharvest, the concentration of glucose, fructose, and citric acid decreased, whereas the concentration of malic and glutamic acids increased. Data from this study offer novel insights into postharvest changes in tomato quality parameters and help elucidate the reasons for the appreciation of this variety by consumers. es_ES
dc.language Inglés es_ES
dc.publisher Universidade de Sao Paulo. Escola Superior de Agricultura "Luiz de Queiroz" es_ES
dc.relation.ispartof Scientia Agricola es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Tomato landrace es_ES
dc.subject Alcobaça es_ES
dc.subject Ripening mutant es_ES
dc.subject Postharvest es_ES
dc.subject Quality es_ES
dc.subject.classification GENETICA es_ES
dc.title Sugar-and-acid profile of Penjar tomatoes and its evolution during storage es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1590/0103-9016-2014-0311 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Casals Missio, J.; Martí-Renau, R.; Casañas Artigas, F.; Cebolla Cornejo, J. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola. 72(4):314-321. doi:10.1590/0103-9016-2014-0311 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1590/0103-9016-2014-0311 es_ES
dc.description.upvformatpinicio 314 es_ES
dc.description.upvformatpfin 321 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 72 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\291657 es_ES
dc.description.references Baldwin, E. A., Goodner, K., & Plotto, A. (2008). Interaction of Volatiles, Sugars, and Acids on Perception of Tomato Aroma and Flavor Descriptors. Journal of Food Science, 73(6), S294-S307. doi:10.1111/j.1750-3841.2008.00825.x es_ES
dc.description.references Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. doi:10.1016/j.postharvbio.2011.05.016 es_ES
dc.description.references Bellisle, F. (1999). Glutamate and the UMAMI taste: sensory, metabolic, nutritional and behavioural considerations. A review of the literature published in the last 10 years. Neuroscience & Biobehavioral Reviews, 23(3), 423-438. doi:10.1016/s0149-7634(98)00043-8 es_ES
dc.description.references Boggio, S. B., Palatnik, J. F., Heldt, H. W., & Valle, E. M. (2000). Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Science, 159(1), 125-133. doi:10.1016/s0168-9452(00)00342-3 es_ES
dc.description.references Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3 es_ES
dc.description.references Bucheli, P., Voirol, E., de la Torre, R., López, J., Rytz, A., Tanksley, S. D., & Pétiard, V. (1999). Definition of Nonvolatile Markers for Flavor of Tomato (Lycopersicon esculentumMill.) as Tools in Selection and Breeding. Journal of Agricultural and Food Chemistry, 47(2), 659-664. doi:10.1021/jf980875l es_ES
dc.description.references Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6 es_ES
dc.description.references Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6 es_ES
dc.description.references Cebolla-Cornejo, J., Valcárcel, M., Herrero-Martínez, J. M., Roselló, S., & Nuez, F. (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. ELECTROPHORESIS, 33(15), 2416-2423. doi:10.1002/elps.201100640 es_ES
dc.description.references Davies, J. N. (1966). Changes in the non-volatile organic acids of tomato fruit during ripening. Journal of the Science of Food and Agriculture, 17(9), 396-400. doi:10.1002/jsfa.2740170903 es_ES
dc.description.references Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit — the influence of environment, nutrition, and genotype. C R C Critical Reviews in Food Science and Nutrition, 15(3), 205-280. doi:10.1080/10408398109527317 es_ES
dc.description.references Ercolano, M. R., Carli, P., Soria, A., Cascone, A., Fogliano, V., Frusciante, L., & Barone, A. (2008). Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica, 164(2), 571-582. doi:10.1007/s10681-008-9768-4 es_ES
dc.description.references Gao, H. Y., Zhu, B. Z., Zhu, H. L., Zhang, Y. L., Xie, Y. H., Li, Y. C., & Luo, Y. B. (2007). Effect of suppression of ethylene biosynthesis on flavor products in tomato fruits. Russian Journal of Plant Physiology, 54(1), 80-88. doi:10.1134/s1021443707010128 es_ES
dc.description.references Getinet, H., Seyoum, T., & Woldetsadik, K. (2008). The effect of cultivar, maturity stage and storage environment on quality of tomatoes. Journal of Food Engineering, 87(4), 467-478. doi:10.1016/j.jfoodeng.2007.12.031 es_ES
dc.description.references Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41(2), 151-155. doi:10.1016/j.postharvbio.2006.03.008 es_ES
dc.description.references Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 es_ES
dc.description.references KOPELIOVITCH, E., MIZRAHI, Y., RABINOWITCH, H. D., & KEDAR, N. (1980). Physiology of the tomato mutant alcobaca. Physiologia Plantarum, 48(2), 307-311. doi:10.1111/j.1399-3054.1980.tb03260.x es_ES
dc.description.references Levin, I., Gilboa, N., Yeselson, E., Shen, S., & Schaffer, A. A. (2000). Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits. Theoretical and Applied Genetics, 100(2), 256-262. doi:10.1007/s001220050034 es_ES
dc.description.references Loiudice, R., Impembo, M., Laratta, B., Villari, G., Lo Voi, A., Siviero, P., & Castaldo, D. (1995). Composition of San Marzano tomato varieties. Food Chemistry, 53(1), 81-89. doi:10.1016/0308-8146(95)95791-4 es_ES
dc.description.references Mutschler, M., Guttieri, M., Kinzer, S., Grierson, D., & Tucker, G. (1988). Changes in ripening-related processes in tomato conditioned by the alc mutant. Theoretical and Applied Genetics, 76(2), 285-292. doi:10.1007/bf00257857 es_ES
dc.description.references Oms-Oliu, G., Hertog, M. L. A. T. M., Van de Poel, B., Ampofo-Asiama, J., Geeraerd, A. H., & Nicolaï, B. M. (2011). Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biology and Technology, 62(1), 7-16. doi:10.1016/j.postharvbio.2011.04.010 es_ES
dc.description.references Oruna-Concha, M.-J., Methven, L., Blumenthal, H., Young, C., & Mottram, D. S. (2007). Differences in Glutamic Acid and 5‘-Ribonucleotide Contents between Flesh and Pulp of Tomatoes and the Relationship with Umami Taste. Journal of Agricultural and Food Chemistry, 55(14), 5776-5780. doi:10.1021/jf070791p es_ES
dc.description.references Patching, C. R., Maw, G. A., & Davies, J. N. (1975). Metabolism of glucose during ripening of detached tomato fruit. Journal of the Science of Food and Agriculture, 26(1), 23-29. doi:10.1002/jsfa.2740260104 es_ES
dc.description.references Prudent, M., Causse, M., Génard, M., Tripodi, P., Grandillo, S., & Bertin, N. (2009). Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. Journal of Experimental Botany, 60(3), 923-937. doi:10.1093/jxb/ern338 es_ES
dc.description.references Rosales, M. A., Rubio-Wilhelmi, M. M., Castellano, R., Castilla, N., Ruiz, J. M., & Romero, L. (2007). Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 113(3), 244-249. doi:10.1016/j.scienta.2007.03.015 es_ES
dc.description.references Saladié, M., Matas, A. J., Isaacson, T., Jenks, M. A., Goodwin, S. M., Niklas, K. J., … Rose, J. K. C. (2007). A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiology, 144(2), 1012-1028. doi:10.1104/pp.107.097477 es_ES
dc.description.references Siracusa, L., Patanè, C., Avola, G., & Ruberto, G. (2011). Polyphenols as Chemotaxonomic Markers in Italian «Long-Storage» Tomato Genotypes. Journal of Agricultural and Food Chemistry, 60(1), 309-314. doi:10.1021/jf203858y es_ES
dc.description.references Sorrequieta, A., Ferraro, G., Boggio, S. B., & Valle, E. M. (2009). Free amino acid production during tomato fruit ripening: a focus on l-glutamate. Amino Acids, 38(5), 1523-1532. doi:10.1007/s00726-009-0373-1 es_ES
dc.description.references Thorne, S. N., & Efiuvwevwere, B. J. O. (1988). Changes in organic acids in chilled tomato fruit (Lycopersicon esculentum Mill). Journal of the Science of Food and Agriculture, 44(4), 309-319. doi:10.1002/jsfa.2740440404 es_ES
dc.description.references Valle, E. M., Boggio, S. B., & Heldt, H. W. (1998). Free Amino Acid Composition of Phloem Sap and Growing Fruit of Lycopersicon esculentum. Plant and Cell Physiology, 39(4), 458-461. doi:10.1093/oxfordjournals.pcp.a029391 es_ES
dc.description.references Winter, H., Lohaus, G., & Heldt, H. W. (1992). Phloem Transport of Amino Acids in Relation to their Cytosolic Levels in Barley Leaves. Plant Physiology, 99(3), 996-1004. doi:10.1104/pp.99.3.996 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem