- -

New opportunities for developing tomato varieties with enhanced carotenoid content

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New opportunities for developing tomato varieties with enhanced carotenoid content

Mostrar el registro completo del ítem

Leiva-Brondo, M.; Valcárcel-Germes, M.; Martí-Renau, R.; Rosello Ripolles, S.; Cebolla Cornejo, J. (2016). New opportunities for developing tomato varieties with enhanced carotenoid content. Scientia Agricola. 73(6):512-519. doi:10.1590/0103-9016-2015-0427

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/97087

Ficheros en el ítem

Metadatos del ítem

Título: New opportunities for developing tomato varieties with enhanced carotenoid content
Autor: Leiva-Brondo, Miguel Valcárcel-Germes, Mercedes Martí-Renau, Raul Rosello Ripolles, Salvador Cebolla Cornejo, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] The development of varieties with a high content of antioxidant compounds, such as carotenoids, has become a major focus in the marketing of tomato. Several mutants have been used in the development of high pigment ...[+]
Palabras clave: Solanum lycopersicum , Functional quality , Lycopene , Beta-carotene , Genetic resources
Derechos de uso: Reconocimiento (by)
Fuente:
Scientia Agricola. (issn: 0103-9016 )
DOI: 10.1590/0103-9016-2015-0427
Editorial:
Universidade de Sao Paulo. Escola Superior de Agricultura "Luiz de Queiroz"
Versión del editor: http://dx.doi.org/10.1590/0103-9016-2015-0427
Tipo: Artículo

References

Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001

Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-x

Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1 [+]
Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001

Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-x

Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1

Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118-129. doi:10.1016/j.tifs.2013.03.006

Burton-Freeman, B. M., & Sesso, H. D. (2014). Whole Food versus Supplement: Comparing the Clinical Evidence of Tomato Intake and Lycopene Supplementation on Cardiovascular Risk Factors. Advances in Nutrition, 5(5), 457-485. doi:10.3945/an.114.005231

Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigón, M. D., & Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. Journal of the Science of Food and Agriculture, 94(14), 2888-2904. doi:10.1002/jsfa.6629

Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit — the influence of environment, nutrition, and genotype. C R C Critical Reviews in Food Science and Nutrition, 15(3), 205-280. doi:10.1080/10408398109527317

Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 83(5), 369-382. doi:10.1002/jsfa.1370

García-Closas, R., Berenguer, A., Tormo, M. J., Sánchez, M. J., Quirós, J. R., Navarro, C., … González, C. A. (2004). Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. British Journal of Nutrition, 91(6), 1005-1011. doi:10.1079/bjn20041130

García-Plazaola, J. I., & Becerril, J. M. (1999). A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 10(6), 307-313. doi:10.1002/(sici)1099-1565(199911/12)10:6<307::aid-pca477>3.0.co;2-l

Gautier, H., Rocci, A., Buret, M., Grasselly, D., Dumas, Y., & Causse, M. (2005). Effect of photoselective filters on the physical and chemical traits of vine-ripened tomato fruits. Canadian Journal of Plant Science, 85(2), 439-446. doi:10.4141/p03-163

Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292-302. doi:10.1111/j.1541-4337.2010.00110.x

Hamauzu, Y., Chachin, K., & Ueda, Y. (1998). Effect of Postharvest Storage Temperature on the Conversion of 14C-Mevalonic Acid to Carotenes in Tomato Fruit. Engei Gakkai zasshi, 67(4), 549-555. doi:10.2503/jjshs.67.549

Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S., … Schakel, S. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12(3), 169-196. doi:10.1006/jfca.1999.0827

Jarquín-Enríquez, L., Mercado-Silva, E. M., Maldonado, J. L., & Lopez-Baltazar, J. (2013). Lycopene content and color index of tomatoes are affected by the greenhouse cover. Scientia Horticulturae, 155, 43-48. doi:10.1016/j.scienta.2013.03.004

Kerr, E. A. (1965). IDENTIFICATION OF HIGH-PIGMENT, hp, TOMATOES IN THE SEEDLING STAGE. Canadian Journal of Plant Science, 45(1), 104-105. doi:10.4141/cjps65-014

Kläring, H.-P., & Krumbein, A. (2013). The Effect of Constraining the Intensity of Solar Radiation on the Photosynthesis, Growth, Yield and Product Quality of Tomato. Journal of Agronomy and Crop Science, 199(5), 351-359. doi:10.1111/jac.12018

Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507

Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205

Leiva-Brondo, M., Valcárcel, M., Cortés-Olmos, C., Roselló, S., Cebolla-Cornejo, J., & Nuez, F. (2012). Exploring alternative germplasm for the development of stable high vitamin C content in tomato varieties. Scientia Horticulturae, 133, 84-88. doi:10.1016/j.scienta.2011.10.013

Long, M., Millar, D. J., Kimura, Y., Donovan, G., Rees, J., Fraser, P. D., … Bolwell, G. P. (2006). Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry, 67(16), 1750-1757. doi:10.1016/j.phytochem.2006.02.022

Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330. doi:10.1002/jsfa.1035

Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Critical Reviews in Food Science and Nutrition, 55(7), 919-929. doi:10.1080/10408398.2012.657809

Roberfroid, M. B. (2000). Concepts and strategy of functional food science: the European perspective. The American Journal of Clinical Nutrition, 71(6), 1660S-1664S. doi:10.1093/ajcn/71.6.1660s

Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276

Stewart, A. J., Bozonnet, S., Mullen, W., Jenkins, G. I., Lean, M. E. J., & Crozier, A. (2000). Occurrence of Flavonols in Tomatoes and Tomato-Based Products. Journal of Agricultural and Food Chemistry, 48(7), 2663-2669. doi:10.1021/jf000070p

Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: a review. International Journal of Food Science & Technology, 46(5), 899-920. doi:10.1111/j.1365-2621.2010.02499.x

Tomes, M. L. (1963). Temperature Inhibition of Carotene Synthesis in Tomato. Botanical Gazette, 124(3), 180-185. doi:10.1086/336189

Zhu, J., & Weir, B. S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1), 1-9. doi:10.1007/bf00222944

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem