- -

New opportunities for developing tomato varieties with enhanced carotenoid content

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New opportunities for developing tomato varieties with enhanced carotenoid content

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leiva-Brondo, Miguel es_ES
dc.contributor.author Valcárcel-Germes, Mercedes es_ES
dc.contributor.author Martí-Renau, Raul es_ES
dc.contributor.author Rosello Ripolles, Salvador es_ES
dc.contributor.author Cebolla Cornejo, Jaime es_ES
dc.date.accessioned 2018-02-06T08:44:26Z
dc.date.available 2018-02-06T08:44:26Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0103-9016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97087
dc.description.abstract [EN] The development of varieties with a high content of antioxidant compounds, such as carotenoids, has become a major focus in the marketing of tomato. Several mutants have been used in the development of high pigment varieties, but the significant influence of the environment on carotenoid content and the presence of negative side effects in vegetative growth and yield have limited the success of these variants. Consequently, the identification of alternative sources of variation in the quest for high carotenoid content is ongoing. In this study, 12 accessions of Solanum lycopersicum (including the former var cerasiforme) and S. pimpinelifolium have been evaluated in three different environments: open field and glasshouse cultivation at two sites. Three accessions (BGV6195 of S. pimpinellifolium, LA1423 of the former var cerasiforme and LA3633 a possible hybrid between S. pimpinellifolium and S. lycopersicum) showed outstanding and stable lycopene content, that doubled in all three environments the content of the positive control LA3538, with the high pigment-1 mutation (hp1). In addition, accession CATIE14812 would also be interesting as regards improvement of 13-carotene content. These materials offer new opportunities in the development of tomato varieties with enriched and reliable carotenoid content and the close taxonomic relationship of these accessions with cultivated tomato will facilitate their use in breeding programs. es_ES
dc.language Inglés es_ES
dc.publisher Universidade de Sao Paulo. Escola Superior de Agricultura "Luiz de Queiroz" es_ES
dc.relation.ispartof Scientia Agricola es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Functional quality es_ES
dc.subject Lycopene es_ES
dc.subject Beta-carotene es_ES
dc.subject Genetic resources es_ES
dc.subject.classification GENETICA es_ES
dc.title New opportunities for developing tomato varieties with enhanced carotenoid content es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1590/0103-9016-2015-0427 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Leiva-Brondo, M.; Valcárcel-Germes, M.; Martí-Renau, R.; Rosello Ripolles, S.; Cebolla Cornejo, J. (2016). New opportunities for developing tomato varieties with enhanced carotenoid content. Scientia Agricola. 73(6):512-519. doi:10.1590/0103-9016-2015-0427 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1590/0103-9016-2015-0427 es_ES
dc.description.upvformatpinicio 512 es_ES
dc.description.upvformatpfin 519 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 73 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\318994 es_ES
dc.description.references Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001 es_ES
dc.description.references Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-x es_ES
dc.description.references Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1 es_ES
dc.description.references Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118-129. doi:10.1016/j.tifs.2013.03.006 es_ES
dc.description.references Burton-Freeman, B. M., & Sesso, H. D. (2014). Whole Food versus Supplement: Comparing the Clinical Evidence of Tomato Intake and Lycopene Supplementation on Cardiovascular Risk Factors. Advances in Nutrition, 5(5), 457-485. doi:10.3945/an.114.005231 es_ES
dc.description.references Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigón, M. D., & Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. Journal of the Science of Food and Agriculture, 94(14), 2888-2904. doi:10.1002/jsfa.6629 es_ES
dc.description.references Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit — the influence of environment, nutrition, and genotype. C R C Critical Reviews in Food Science and Nutrition, 15(3), 205-280. doi:10.1080/10408398109527317 es_ES
dc.description.references Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 83(5), 369-382. doi:10.1002/jsfa.1370 es_ES
dc.description.references García-Closas, R., Berenguer, A., Tormo, M. J., Sánchez, M. J., Quirós, J. R., Navarro, C., … González, C. A. (2004). Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. British Journal of Nutrition, 91(6), 1005-1011. doi:10.1079/bjn20041130 es_ES
dc.description.references García-Plazaola, J. I., & Becerril, J. M. (1999). A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 10(6), 307-313. doi:10.1002/(sici)1099-1565(199911/12)10:6<307::aid-pca477>3.0.co;2-l es_ES
dc.description.references Gautier, H., Rocci, A., Buret, M., Grasselly, D., Dumas, Y., & Causse, M. (2005). Effect of photoselective filters on the physical and chemical traits of vine-ripened tomato fruits. Canadian Journal of Plant Science, 85(2), 439-446. doi:10.4141/p03-163 es_ES
dc.description.references Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292-302. doi:10.1111/j.1541-4337.2010.00110.x es_ES
dc.description.references Hamauzu, Y., Chachin, K., & Ueda, Y. (1998). Effect of Postharvest Storage Temperature on the Conversion of 14C-Mevalonic Acid to Carotenes in Tomato Fruit. Engei Gakkai zasshi, 67(4), 549-555. doi:10.2503/jjshs.67.549 es_ES
dc.description.references Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S., … Schakel, S. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12(3), 169-196. doi:10.1006/jfca.1999.0827 es_ES
dc.description.references Jarquín-Enríquez, L., Mercado-Silva, E. M., Maldonado, J. L., & Lopez-Baltazar, J. (2013). Lycopene content and color index of tomatoes are affected by the greenhouse cover. Scientia Horticulturae, 155, 43-48. doi:10.1016/j.scienta.2013.03.004 es_ES
dc.description.references Kerr, E. A. (1965). IDENTIFICATION OF HIGH-PIGMENT, hp, TOMATOES IN THE SEEDLING STAGE. Canadian Journal of Plant Science, 45(1), 104-105. doi:10.4141/cjps65-014 es_ES
dc.description.references Kläring, H.-P., & Krumbein, A. (2013). The Effect of Constraining the Intensity of Solar Radiation on the Photosynthesis, Growth, Yield and Product Quality of Tomato. Journal of Agronomy and Crop Science, 199(5), 351-359. doi:10.1111/jac.12018 es_ES
dc.description.references Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 es_ES
dc.description.references Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205 es_ES
dc.description.references Leiva-Brondo, M., Valcárcel, M., Cortés-Olmos, C., Roselló, S., Cebolla-Cornejo, J., & Nuez, F. (2012). Exploring alternative germplasm for the development of stable high vitamin C content in tomato varieties. Scientia Horticulturae, 133, 84-88. doi:10.1016/j.scienta.2011.10.013 es_ES
dc.description.references Long, M., Millar, D. J., Kimura, Y., Donovan, G., Rees, J., Fraser, P. D., … Bolwell, G. P. (2006). Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry, 67(16), 1750-1757. doi:10.1016/j.phytochem.2006.02.022 es_ES
dc.description.references Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330. doi:10.1002/jsfa.1035 es_ES
dc.description.references Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Critical Reviews in Food Science and Nutrition, 55(7), 919-929. doi:10.1080/10408398.2012.657809 es_ES
dc.description.references Roberfroid, M. B. (2000). Concepts and strategy of functional food science: the European perspective. The American Journal of Clinical Nutrition, 71(6), 1660S-1664S. doi:10.1093/ajcn/71.6.1660s es_ES
dc.description.references Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276 es_ES
dc.description.references Stewart, A. J., Bozonnet, S., Mullen, W., Jenkins, G. I., Lean, M. E. J., & Crozier, A. (2000). Occurrence of Flavonols in Tomatoes and Tomato-Based Products. Journal of Agricultural and Food Chemistry, 48(7), 2663-2669. doi:10.1021/jf000070p es_ES
dc.description.references Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: a review. International Journal of Food Science & Technology, 46(5), 899-920. doi:10.1111/j.1365-2621.2010.02499.x es_ES
dc.description.references Tomes, M. L. (1963). Temperature Inhibition of Carotene Synthesis in Tomato. Botanical Gazette, 124(3), 180-185. doi:10.1086/336189 es_ES
dc.description.references Zhu, J., & Weir, B. S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1), 1-9. doi:10.1007/bf00222944 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem