Mostrar el registro sencillo del ítem
dc.contributor.author | Leiva-Brondo, Miguel | es_ES |
dc.contributor.author | Valcárcel-Germes, Mercedes | es_ES |
dc.contributor.author | Martí-Renau, Raul | es_ES |
dc.contributor.author | Rosello Ripolles, Salvador | es_ES |
dc.contributor.author | Cebolla Cornejo, Jaime | es_ES |
dc.date.accessioned | 2018-02-06T08:44:26Z | |
dc.date.available | 2018-02-06T08:44:26Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0103-9016 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/97087 | |
dc.description.abstract | [EN] The development of varieties with a high content of antioxidant compounds, such as carotenoids, has become a major focus in the marketing of tomato. Several mutants have been used in the development of high pigment varieties, but the significant influence of the environment on carotenoid content and the presence of negative side effects in vegetative growth and yield have limited the success of these variants. Consequently, the identification of alternative sources of variation in the quest for high carotenoid content is ongoing. In this study, 12 accessions of Solanum lycopersicum (including the former var cerasiforme) and S. pimpinelifolium have been evaluated in three different environments: open field and glasshouse cultivation at two sites. Three accessions (BGV6195 of S. pimpinellifolium, LA1423 of the former var cerasiforme and LA3633 a possible hybrid between S. pimpinellifolium and S. lycopersicum) showed outstanding and stable lycopene content, that doubled in all three environments the content of the positive control LA3538, with the high pigment-1 mutation (hp1). In addition, accession CATIE14812 would also be interesting as regards improvement of 13-carotene content. These materials offer new opportunities in the development of tomato varieties with enriched and reliable carotenoid content and the close taxonomic relationship of these accessions with cultivated tomato will facilitate their use in breeding programs. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universidade de Sao Paulo. Escola Superior de Agricultura "Luiz de Queiroz" | es_ES |
dc.relation.ispartof | Scientia Agricola | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Functional quality | es_ES |
dc.subject | Lycopene | es_ES |
dc.subject | Beta-carotene | es_ES |
dc.subject | Genetic resources | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | New opportunities for developing tomato varieties with enhanced carotenoid content | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1590/0103-9016-2015-0427 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Leiva-Brondo, M.; Valcárcel-Germes, M.; Martí-Renau, R.; Rosello Ripolles, S.; Cebolla Cornejo, J. (2016). New opportunities for developing tomato varieties with enhanced carotenoid content. Scientia Agricola. 73(6):512-519. doi:10.1590/0103-9016-2015-0427 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1590/0103-9016-2015-0427 | es_ES |
dc.description.upvformatpinicio | 512 | es_ES |
dc.description.upvformatpfin | 519 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 73 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\318994 | es_ES |
dc.description.references | Adalid, A. M., Roselló, S., & Nuez, F. (2010). Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. Journal of Food Composition and Analysis, 23(6), 613-618. doi:10.1016/j.jfca.2010.03.001 | es_ES |
dc.description.references | Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-x | es_ES |
dc.description.references | Baqar, M. R., & Lee, T. H. (1978). Interaction of CPTA and High Temperature on Carotenoid Synthesis in Tomato Fruit. Zeitschrift für Pflanzenphysiologie, 88(5), 431-435. doi:10.1016/s0044-328x(78)80259-1 | es_ES |
dc.description.references | Bigliardi, B., & Galati, F. (2013). Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology, 31(2), 118-129. doi:10.1016/j.tifs.2013.03.006 | es_ES |
dc.description.references | Burton-Freeman, B. M., & Sesso, H. D. (2014). Whole Food versus Supplement: Comparing the Clinical Evidence of Tomato Intake and Lycopene Supplementation on Cardiovascular Risk Factors. Advances in Nutrition, 5(5), 457-485. doi:10.3945/an.114.005231 | es_ES |
dc.description.references | Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigón, M. D., & Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. Journal of the Science of Food and Agriculture, 94(14), 2888-2904. doi:10.1002/jsfa.6629 | es_ES |
dc.description.references | Davies, J. N., Hobson, G. E., & McGlasson, W. B. (1981). The constituents of tomato fruit — the influence of environment, nutrition, and genotype. C R C Critical Reviews in Food Science and Nutrition, 15(3), 205-280. doi:10.1080/10408398109527317 | es_ES |
dc.description.references | Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 83(5), 369-382. doi:10.1002/jsfa.1370 | es_ES |
dc.description.references | García-Closas, R., Berenguer, A., Tormo, M. J., Sánchez, M. J., Quirós, J. R., Navarro, C., … González, C. A. (2004). Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. British Journal of Nutrition, 91(6), 1005-1011. doi:10.1079/bjn20041130 | es_ES |
dc.description.references | García-Plazaola, J. I., & Becerril, J. M. (1999). A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 10(6), 307-313. doi:10.1002/(sici)1099-1565(199911/12)10:6<307::aid-pca477>3.0.co;2-l | es_ES |
dc.description.references | Gautier, H., Rocci, A., Buret, M., Grasselly, D., Dumas, Y., & Causse, M. (2005). Effect of photoselective filters on the physical and chemical traits of vine-ripened tomato fruits. Canadian Journal of Plant Science, 85(2), 439-446. doi:10.4141/p03-163 | es_ES |
dc.description.references | Granato, D., Branco, G. F., Nazzaro, F., Cruz, A. G., & Faria, J. A. F. (2010). Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Comprehensive Reviews in Food Science and Food Safety, 9(3), 292-302. doi:10.1111/j.1541-4337.2010.00110.x | es_ES |
dc.description.references | Hamauzu, Y., Chachin, K., & Ueda, Y. (1998). Effect of Postharvest Storage Temperature on the Conversion of 14C-Mevalonic Acid to Carotenes in Tomato Fruit. Engei Gakkai zasshi, 67(4), 549-555. doi:10.2503/jjshs.67.549 | es_ES |
dc.description.references | Holden, J. M., Eldridge, A. L., Beecher, G. R., Marilyn Buzzard, I., Bhagwat, S., Davis, C. S., … Schakel, S. (1999). Carotenoid Content of U.S. Foods: An Update of the Database. Journal of Food Composition and Analysis, 12(3), 169-196. doi:10.1006/jfca.1999.0827 | es_ES |
dc.description.references | Jarquín-Enríquez, L., Mercado-Silva, E. M., Maldonado, J. L., & Lopez-Baltazar, J. (2013). Lycopene content and color index of tomatoes are affected by the greenhouse cover. Scientia Horticulturae, 155, 43-48. doi:10.1016/j.scienta.2013.03.004 | es_ES |
dc.description.references | Kerr, E. A. (1965). IDENTIFICATION OF HIGH-PIGMENT, hp, TOMATOES IN THE SEEDLING STAGE. Canadian Journal of Plant Science, 45(1), 104-105. doi:10.4141/cjps65-014 | es_ES |
dc.description.references | Kläring, H.-P., & Krumbein, A. (2013). The Effect of Constraining the Intensity of Solar Radiation on the Photosynthesis, Growth, Yield and Product Quality of Tomato. Journal of Agronomy and Crop Science, 199(5), 351-359. doi:10.1111/jac.12018 | es_ES |
dc.description.references | Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 | es_ES |
dc.description.references | Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205 | es_ES |
dc.description.references | Leiva-Brondo, M., Valcárcel, M., Cortés-Olmos, C., Roselló, S., Cebolla-Cornejo, J., & Nuez, F. (2012). Exploring alternative germplasm for the development of stable high vitamin C content in tomato varieties. Scientia Horticulturae, 133, 84-88. doi:10.1016/j.scienta.2011.10.013 | es_ES |
dc.description.references | Long, M., Millar, D. J., Kimura, Y., Donovan, G., Rees, J., Fraser, P. D., … Bolwell, G. P. (2006). Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry, 67(16), 1750-1757. doi:10.1016/j.phytochem.2006.02.022 | es_ES |
dc.description.references | Martínez-Valverde, I., Periago, M. J., Provan, G., & Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330. doi:10.1002/jsfa.1035 | es_ES |
dc.description.references | Perveen, R., Suleria, H. A. R., Anjum, F. M., Butt, M. S., Pasha, I., & Ahmad, S. (2015). Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Critical Reviews in Food Science and Nutrition, 55(7), 919-929. doi:10.1080/10408398.2012.657809 | es_ES |
dc.description.references | Roberfroid, M. B. (2000). Concepts and strategy of functional food science: the European perspective. The American Journal of Clinical Nutrition, 71(6), 1660S-1664S. doi:10.1093/ajcn/71.6.1660s | es_ES |
dc.description.references | Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276 | es_ES |
dc.description.references | Stewart, A. J., Bozonnet, S., Mullen, W., Jenkins, G. I., Lean, M. E. J., & Crozier, A. (2000). Occurrence of Flavonols in Tomatoes and Tomato-Based Products. Journal of Agricultural and Food Chemistry, 48(7), 2663-2669. doi:10.1021/jf000070p | es_ES |
dc.description.references | Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: a review. International Journal of Food Science & Technology, 46(5), 899-920. doi:10.1111/j.1365-2621.2010.02499.x | es_ES |
dc.description.references | Tomes, M. L. (1963). Temperature Inhibition of Carotene Synthesis in Tomato. Botanical Gazette, 124(3), 180-185. doi:10.1086/336189 | es_ES |
dc.description.references | Zhu, J., & Weir, B. S. (1996). Diallel analysis for sex-linked and maternal effects. Theoretical and Applied Genetics, 92(1), 1-9. doi:10.1007/bf00222944 | es_ES |