- -

The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Arias, Alicia es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2018-02-13T08:25:37Z
dc.date.available 2018-02-13T08:25:37Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1936-0584 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97780
dc.description.abstract [EN] The riparian vegetation dynamic model (RVDM) is an ecohydrological model aimed to study the vegetation dynamics in riparian areas that represents an upgrade with respect to previous tools in the way of understanding the riparian dynamics. Important novelties are proposed by this tool, including a high temporal resolution (daily time step), a proposal of a new plant classification approach useful for research and management (successional plant functional types), good representation of the key processes that determine the vegetation dynamics in riparian areas (drought and flood impacts, recruitment, growth, succession and competition), an easy implementation and feasible inclusion of river morphodynamics in the model implementation (including different daily elevation and soil maps in the inputs). The model implementation in a Mediterranean semi-arid study site resulted satisfactorily (cell by cell calibration accuracy >= 65% and cell by cell validation accuracy between 40% and 60%), demonstrating the great potential of this approach for future research and management applications. Although 36 parameters are included in the model conceptualization, the global sensitivity analysis demonstrated that only eight types of parameters are actually influent. These parameters are as follows: minimum time since mixed for transition to terrestrial, root depths, transpiration factors, critical shear stress of early stages, minimum biomass required to allow succession, germination minimum capillary water content in the upper soil, effective depth considered for evaporation from bare soil and coverage of pioneers. Riparian vegetation dynamic model will be a useful tool for gaining a better understanding of the riparian plants behaviour under different ecohydrological conditions. Copyright (C) 2015 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship This research has been developed within the research project SCARCE (Consolider-Ingenio 2010 CSD2009-00065) supported by the Spanish Ministry of Economy and Competitiveness. The hydrological data, the aerial photographs and the meteorological data have been supplied by the Hydrological Studies Centre (CEH-CEDEX), the Jucar River Basin Authority and the Spanish National Meteorological Agency (AEMET), respectively. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Ecohydrology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Riparian vegetation modelling es_ES
dc.subject Dynamic distribution modelling es_ES
dc.subject Ecohydrological processes es_ES
dc.subject Plant recruitment es_ES
dc.subject Flood and droughts impacts es_ES
dc.subject Biomass growth es_ES
dc.subject Plant competition es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/eco.1648 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation García-Arias, A.; Francés, F. (2016). The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics. Ecohydrology. 9(3):438-459. https://doi.org/10.1002/eco.1648 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/eco.1648 es_ES
dc.description.upvformatpinicio 438 es_ES
dc.description.upvformatpfin 459 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\324944 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014 es_ES
dc.description.references Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017 es_ES
dc.description.references Benjankar, R., Burke, M., Yager, E., Tonina, D., Egger, G., Rood, S. B., & Merz, N. (2014). Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers. Journal of Environmental Management, 145, 277-288. doi:10.1016/j.jenvman.2014.06.027 es_ES
dc.description.references BOEDELTJE, G., BAKKER, J. P., TEN BRINKE, A., VAN GROENENDAEL, J. M., & SOESBERGEN, M. (2004). Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology, 92(5), 786-796. doi:10.1111/j.0022-0477.2004.00906.x es_ES
dc.description.references Brinson, M. M., & Verhoeven, J. (1999). Riparian forests. Maintaining Biodiversity in Forest Ecosystems, 265-299. doi:10.1017/cbo9780511613029.010 es_ES
dc.description.references CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001 es_ES
dc.description.references Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933 es_ES
dc.description.references Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014 es_ES
dc.description.references Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi:10.1007/bf00329030 es_ES
dc.description.references Cannell, M. G. R., Milne, R., Sheppard, L. J., & Unsworth, M. H. (1987). Radiation Interception and Productivity of Willow. The Journal of Applied Ecology, 24(1), 261. doi:10.2307/2403803 es_ES
dc.description.references Cao, X., Jia, J. B., Li, H., Li, M. C., Luo, J., Liang, Z. S., … Luo, Z. B. (2011). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14(4), 612-620. doi:10.1111/j.1438-8677.2011.00531.x es_ES
dc.description.references Cerrillo, T., Rodríguez, M. E., Achinelli, F., Doffo, G., & Luquez, V. M. (2013). Do greenhouse experiments predict willow responses tolong term flooding events in the field? Bosque (Valdivia), 34(1), 17-18. doi:10.4067/s0717-92002013000100009 es_ES
dc.description.references Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104 es_ES
dc.description.references Collalti, A., Perugini, L., Santini, M., Chiti, T., Nolè, A., Matteucci, G., & Valentini, R. (2014). A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecological Modelling, 272, 362-378. doi:10.1016/j.ecolmodel.2013.09.016 es_ES
dc.description.references Corenblit, D., Tabacchi, E., Steiger, J., & Gurnell, A. M. (2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84(1-2), 56-86. doi:10.1016/j.earscirev.2007.05.004 es_ES
dc.description.references Corenblit, D., Steiger, J., Tabacchi, E., González, E., & Planty-Tabacchi, A.-M. (2012). ECOSYSTEM ENGINEERS MODULATE EXOTIC INVASIONS IN RIPARIAN PLANT COMMUNITIES BY MODIFYING HYDROGEOMORPHIC CONNECTIVITY. River Research and Applications, 30(1), 45-59. doi:10.1002/rra.2618 es_ES
dc.description.references Coulthard, T. J., Hicks, D. M., & Van De Wiel, M. J. (2007). Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology, 90(3-4), 192-207. doi:10.1016/j.geomorph.2006.10.030 es_ES
dc.description.references Douma, J. C., de Haan, M. W. A., Aerts, R., Witte, J.-P. M., & van Bodegom, P. M. (2011). Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions. Journal of Ecology, 100(2), 366-380. doi:10.1111/j.1365-2745.2011.01932.x es_ES
dc.description.references Formann, E., Habersack, H. M., & Schober, S. (2007). Morphodynamic river processes and techniques for assessment of channel evolution in Alpine gravel bed rivers. Geomorphology, 90(3-4), 340-355. doi:10.1016/j.geomorph.2006.10.029 es_ES
dc.description.references García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garófano-Gómez, V., … Rodríguez-González, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331 es_ES
dc.description.references García-Arias, A., Francés, F., Morales-de la Cruz, M., Real, J., Vallés-Morán, F., Garófano-Gómez, V., & Martínez-Capel, F. (2013). Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology, 7(2), 659-677. doi:10.1002/eco.1387 es_ES
dc.description.references Glenn, E., Huete, A., Nagler, P., & Nelson, S. (2008). Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors, 8(4), 2136-2160. doi:10.3390/s8042136 es_ES
dc.description.references González, E., Comín, F. A., & Muller, E. (2009). Seed dispersal, germination and early seedling establishment of Populus alba L. under simulated water table declines in different substrates. Trees, 24(1), 151-163. doi:10.1007/s00468-009-0388-y es_ES
dc.description.references GREET, J., ANGUS WEBB, J., & COUSENS, R. D. (2011). The importance of seasonal flow timing for riparian vegetation dynamics: a systematic review using causal criteria analysis. Freshwater Biology, 56(7), 1231-1247. doi:10.1111/j.1365-2427.2011.02564.x es_ES
dc.description.references Guilloy-Froget, H., Muller, E., Barsoum, N., & Hughes, F. M. M. (2002). Dispersal, germination, and survival of Populus nigra L. (Salicaceae) in changing hydrologic conditions. Wetlands, 22(3), 478-488. doi:10.1672/0277-5212(2002)022[0478:dgasop]2.0.co;2 es_ES
dc.description.references Gurnell, A., Thompson, K., Goodson, J., & Moggridge, H. (2008). Propagule deposition along river margins: linking hydrology and ecology. Journal of Ecology, 96(3), 553-565. doi:10.1111/j.1365-2745.2008.01358.x es_ES
dc.description.references Hood, W. G., & Naiman, R. J. (2000). Plant Ecology, 148(1), 105-114. doi:10.1023/a:1009800327334 es_ES
dc.description.references Hooke, J. M., Brookes, C. J., Duane, W., & Mant, J. M. (2005). A simulation model of morphological, vegetation and sediment changes in ephemeral streams. Earth Surface Processes and Landforms, 30(7), 845-866. doi:10.1002/esp.1195 es_ES
dc.description.references Hornberger, G. (1980). Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario. Water Research, 14(1), 29-42. doi:10.1016/0043-1354(80)90039-1 es_ES
dc.description.references Kozlowski, T. T. (2002). Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands, 22(3), 550-561. doi:10.1672/0277-5212(2002)022[0550:peiofo]2.0.co;2 es_ES
dc.description.references Laio, F., Porporato, A., Fernandez-Illescas, C. ., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 745-762. doi:10.1016/s0309-1708(01)00007-0 es_ES
dc.description.references Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785-813. doi:10.1016/j.jaridenv.2005.03.026 es_ES
dc.description.references Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94-100. doi:10.1016/j.tree.2003.10.002 es_ES
dc.description.references Maddock T III Baird KJ 2003 A riparian evapotranspiration package for Modflow-96 and Modflow-2000 University of Arizona 60 es_ES
dc.description.references Maddock T III Baird KJ Hanson RT Schmid W Hoori A 2012 RIP-ET: a riparian evapotranspiration package for MODFLOW-2005 76 es_ES
dc.description.references Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands, 18(4), 634-645. doi:10.1007/bf03161678 es_ES
dc.description.references McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. doi:10.1016/0002-1571(71)90022-7 es_ES
dc.description.references Medici, C., Wade, A. J., & Francés, F. (2012). Does increased hydrochemical model complexity decrease robustness? Journal of Hydrology, 440-441, 1-13. doi:10.1016/j.jhydrol.2012.02.047 es_ES
dc.description.references MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x es_ES
dc.description.references Montaldo, N., Rondena, R., Albertson, J. D., & Mancini, M. (2005). Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems. Water Resources Research, 41(10). doi:10.1029/2005wr004094 es_ES
dc.description.references Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017 es_ES
dc.description.references NAGLER, P. (2004). Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology, 125(1-2), 1-17. doi:10.1016/j.agrformet.2004.03.008 es_ES
dc.description.references Naiman, R. J., Latterell, J. J., Pettit, N. E., & Olden, J. D. (2008). Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience, 340(9-10), 629-643. doi:10.1016/j.crte.2008.01.002 es_ES
dc.description.references Naumburg, E., Mata-gonzalez, R., Hunter, R. G., Mclendon, T., & Martin, D. W. (2005). Phreatophytic Vegetation and Groundwater Fluctuations: A Review of Current Research and Application of Ecosystem Response Modeling with an Emphasis on Great Basin Vegetation. Environmental Management, 35(6), 726-740. doi:10.1007/s00267-004-0194-7 es_ES
dc.description.references Neff, K. P., & Baldwin, A. H. (2005). Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh. Wetlands, 25(2), 392-404. doi:10.1672/14 es_ES
dc.description.references PADILLA, F. M., & PUGNAIRE, F. I. (2007). Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21(3), 489-495. doi:10.1111/j.1365-2435.2007.01267.x es_ES
dc.description.references Pasquato, M., Medici, C., Friend, A. D., & Francés, F. (2014). Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology, 8(6), 1024-1036. doi:10.1002/eco.1559 es_ES
dc.description.references Perona, P., Camporeale, C., Perucca, E., Savina, M., Molnar, P., Burlando, P., & Ridolfi, L. (2009). Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquatic Sciences, 71(3), 266-278. doi:10.1007/s00027-009-9215-1 es_ES
dc.description.references Perucca, E., Camporeale, C., & Ridolfi, L. (2006). Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research, 111(G1). doi:10.1029/2005jg000073 es_ES
dc.description.references Polley, H. W., Phillips, R. L., Frank, A. B., Bradford, J. A., Sims, P. L., Morgan, J. A., & Kiniry, J. R. (2010). Variability in Light-Use Efficiency for Gross Primary Productivity on Great Plains Grasslands. Ecosystems, 14(1), 15-27. doi:10.1007/s10021-010-9389-3 es_ES
dc.description.references Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 725-744. doi:10.1016/s0309-1708(01)00006-9 es_ES
dc.description.references Quevedo, D. I., & Francés, F. (2008). A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12(5), 1175-1187. doi:10.5194/hess-12-1175-2008 es_ES
dc.description.references Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 695-705. doi:10.1016/s0309-1708(01)00004-5 es_ES
dc.description.references Rood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113 es_ES
dc.description.references Ryel, R., Caldwell, M., Yoder, C., Or, D., & Leffler, A. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173-184. doi:10.1007/s004420100794 es_ES
dc.description.references Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90(3), 480-494. doi:10.1046/j.1365-2745.2002.00682.x es_ES
dc.description.references Scott RL Goodrich DC Levick LR 2003 A GIS-based management tool to quantify riparian vegetation groundwater use 222 227 es_ES
dc.description.references Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., … Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161-185. doi:10.1046/j.1365-2486.2003.00569.x es_ES
dc.description.references Soetaert, K., Hoffmann, M., Meire, P., Starink, M., Oevelen, D. van, Regenmortel, S. V., & Cox, T. (2004). Modeling growth and carbon allocation in two reed beds (Phragmites australis) in the Scheldt estuary. Aquatic Botany, 79(3), 211-234. doi:10.1016/j.aquabot.2004.02.001 es_ES
dc.description.references Stevens LE Waring LG 1985 The effects of prolonged flooding on the riparian plant community in Grand Canyon es_ES
dc.description.references Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.x es_ES
dc.description.references Tabacchi, E., Planty-Tabacchi, A.-M., Roques, L., & Nadal, E. (2005). Seed inputs in riparian zones: implications for plant invasion. River Research and Applications, 21(2-3), 299-313. doi:10.1002/rra.848 es_ES
dc.description.references TURNER, D. P., URBANSKI, S., BREMER, D., WOFSY, S. C., MEYERS, T., GOWER, S. T., & GREGORY, M. (2003). A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 9(3), 383-395. doi:10.1046/j.1365-2486.2003.00573.x es_ES
dc.description.references Wade, A. J., Hornberger, G. M., Whitehead, P. G., Jarvie, H. P., & Flynn, N. (2001). On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis. Water Resources Research, 37(11), 2777-2792. doi:10.1029/2000wr000115 es_ES
dc.description.references Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. doi:10.1016/j.jhydrol.2005.07.022 es_ES
dc.description.references Woodward, F. I., & Cramer, W. (1996). Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7(3), 306-308. doi:10.1111/j.1654-1103.1996.tb00489.x es_ES
dc.description.references Ye, F., Chen, Q., Blanckaert, K., & Ma, J. (2012). Riparian vegetation dynamics: insight provided by a process-based model, a statistical model and field data. Ecohydrology, 6(4), 567-585. doi:10.1002/eco.1348 es_ES
dc.description.references Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., … Wofsy, S. C. (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3-4), 189-207. doi:10.1016/j.agrformet.2006.12.001 es_ES
dc.description.references Zheng, Z., & Wang, G. (2007). Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4), n/a-n/a. doi:10.1029/2007jg000413 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem