- -

The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics

Mostrar el registro completo del ítem

García-Arias, A.; Francés, F. (2016). The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics. Ecohydrology. 9(3):438-459. https://doi.org/10.1002/eco.1648

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/97780

Ficheros en el ítem

Metadatos del ítem

Título: The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics
Autor: García-Arias, Alicia Francés, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Fecha difusión:
Resumen:
[EN] The riparian vegetation dynamic model (RVDM) is an ecohydrological model aimed to study the vegetation dynamics in riparian areas that represents an upgrade with respect to previous tools in the way of understanding ...[+]
Palabras clave: Riparian vegetation modelling , Dynamic distribution modelling , Ecohydrological processes , Plant recruitment , Flood and droughts impacts , Biomass growth , Plant competition
Derechos de uso: Reserva de todos los derechos
Fuente:
Ecohydrology. (issn: 1936-0584 )
DOI: 10.1002/eco.1648
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/eco.1648
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/
Agradecimientos:
This research has been developed within the research project SCARCE (Consolider-Ingenio 2010 CSD2009-00065) supported by the Spanish Ministry of Economy and Competitiveness. The hydrological data, the aerial photographs ...[+]
Tipo: Artículo

References

Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014

Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017

Benjankar, R., Burke, M., Yager, E., Tonina, D., Egger, G., Rood, S. B., & Merz, N. (2014). Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers. Journal of Environmental Management, 145, 277-288. doi:10.1016/j.jenvman.2014.06.027 [+]
Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014

Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017

Benjankar, R., Burke, M., Yager, E., Tonina, D., Egger, G., Rood, S. B., & Merz, N. (2014). Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers. Journal of Environmental Management, 145, 277-288. doi:10.1016/j.jenvman.2014.06.027

BOEDELTJE, G., BAKKER, J. P., TEN BRINKE, A., VAN GROENENDAEL, J. M., & SOESBERGEN, M. (2004). Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology, 92(5), 786-796. doi:10.1111/j.0022-0477.2004.00906.x

Brinson, M. M., & Verhoeven, J. (1999). Riparian forests. Maintaining Biodiversity in Forest Ecosystems, 265-299. doi:10.1017/cbo9780511613029.010

CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001

Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933

Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014

Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi:10.1007/bf00329030

Cannell, M. G. R., Milne, R., Sheppard, L. J., & Unsworth, M. H. (1987). Radiation Interception and Productivity of Willow. The Journal of Applied Ecology, 24(1), 261. doi:10.2307/2403803

Cao, X., Jia, J. B., Li, H., Li, M. C., Luo, J., Liang, Z. S., … Luo, Z. B. (2011). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14(4), 612-620. doi:10.1111/j.1438-8677.2011.00531.x

Cerrillo, T., Rodríguez, M. E., Achinelli, F., Doffo, G., & Luquez, V. M. (2013). Do greenhouse experiments predict willow responses tolong term flooding events in the field? Bosque (Valdivia), 34(1), 17-18. doi:10.4067/s0717-92002013000100009

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104

Collalti, A., Perugini, L., Santini, M., Chiti, T., Nolè, A., Matteucci, G., & Valentini, R. (2014). A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecological Modelling, 272, 362-378. doi:10.1016/j.ecolmodel.2013.09.016

Corenblit, D., Tabacchi, E., Steiger, J., & Gurnell, A. M. (2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84(1-2), 56-86. doi:10.1016/j.earscirev.2007.05.004

Corenblit, D., Steiger, J., Tabacchi, E., González, E., & Planty-Tabacchi, A.-M. (2012). ECOSYSTEM ENGINEERS MODULATE EXOTIC INVASIONS IN RIPARIAN PLANT COMMUNITIES BY MODIFYING HYDROGEOMORPHIC CONNECTIVITY. River Research and Applications, 30(1), 45-59. doi:10.1002/rra.2618

Coulthard, T. J., Hicks, D. M., & Van De Wiel, M. J. (2007). Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology, 90(3-4), 192-207. doi:10.1016/j.geomorph.2006.10.030

Douma, J. C., de Haan, M. W. A., Aerts, R., Witte, J.-P. M., & van Bodegom, P. M. (2011). Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions. Journal of Ecology, 100(2), 366-380. doi:10.1111/j.1365-2745.2011.01932.x

Formann, E., Habersack, H. M., & Schober, S. (2007). Morphodynamic river processes and techniques for assessment of channel evolution in Alpine gravel bed rivers. Geomorphology, 90(3-4), 340-355. doi:10.1016/j.geomorph.2006.10.029

García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garófano-Gómez, V., … Rodríguez-González, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331

García-Arias, A., Francés, F., Morales-de la Cruz, M., Real, J., Vallés-Morán, F., Garófano-Gómez, V., & Martínez-Capel, F. (2013). Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology, 7(2), 659-677. doi:10.1002/eco.1387

Glenn, E., Huete, A., Nagler, P., & Nelson, S. (2008). Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors, 8(4), 2136-2160. doi:10.3390/s8042136

González, E., Comín, F. A., & Muller, E. (2009). Seed dispersal, germination and early seedling establishment of Populus alba L. under simulated water table declines in different substrates. Trees, 24(1), 151-163. doi:10.1007/s00468-009-0388-y

GREET, J., ANGUS WEBB, J., & COUSENS, R. D. (2011). The importance of seasonal flow timing for riparian vegetation dynamics: a systematic review using causal criteria analysis. Freshwater Biology, 56(7), 1231-1247. doi:10.1111/j.1365-2427.2011.02564.x

Guilloy-Froget, H., Muller, E., Barsoum, N., & Hughes, F. M. M. (2002). Dispersal, germination, and survival of Populus nigra L. (Salicaceae) in changing hydrologic conditions. Wetlands, 22(3), 478-488. doi:10.1672/0277-5212(2002)022[0478:dgasop]2.0.co;2

Gurnell, A., Thompson, K., Goodson, J., & Moggridge, H. (2008). Propagule deposition along river margins: linking hydrology and ecology. Journal of Ecology, 96(3), 553-565. doi:10.1111/j.1365-2745.2008.01358.x

Hood, W. G., & Naiman, R. J. (2000). Plant Ecology, 148(1), 105-114. doi:10.1023/a:1009800327334

Hooke, J. M., Brookes, C. J., Duane, W., & Mant, J. M. (2005). A simulation model of morphological, vegetation and sediment changes in ephemeral streams. Earth Surface Processes and Landforms, 30(7), 845-866. doi:10.1002/esp.1195

Hornberger, G. (1980). Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario. Water Research, 14(1), 29-42. doi:10.1016/0043-1354(80)90039-1

Kozlowski, T. T. (2002). Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands, 22(3), 550-561. doi:10.1672/0277-5212(2002)022[0550:peiofo]2.0.co;2

Laio, F., Porporato, A., Fernandez-Illescas, C. ., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 745-762. doi:10.1016/s0309-1708(01)00007-0

Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785-813. doi:10.1016/j.jaridenv.2005.03.026

Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94-100. doi:10.1016/j.tree.2003.10.002

Maddock T III Baird KJ 2003 A riparian evapotranspiration package for Modflow-96 and Modflow-2000 University of Arizona 60

Maddock T III Baird KJ Hanson RT Schmid W Hoori A 2012 RIP-ET: a riparian evapotranspiration package for MODFLOW-2005 76

Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands, 18(4), 634-645. doi:10.1007/bf03161678

McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. doi:10.1016/0002-1571(71)90022-7

Medici, C., Wade, A. J., & Francés, F. (2012). Does increased hydrochemical model complexity decrease robustness? Journal of Hydrology, 440-441, 1-13. doi:10.1016/j.jhydrol.2012.02.047

MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.x

Montaldo, N., Rondena, R., Albertson, J. D., & Mancini, M. (2005). Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems. Water Resources Research, 41(10). doi:10.1029/2005wr004094

Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017

NAGLER, P. (2004). Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology, 125(1-2), 1-17. doi:10.1016/j.agrformet.2004.03.008

Naiman, R. J., Latterell, J. J., Pettit, N. E., & Olden, J. D. (2008). Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience, 340(9-10), 629-643. doi:10.1016/j.crte.2008.01.002

Naumburg, E., Mata-gonzalez, R., Hunter, R. G., Mclendon, T., & Martin, D. W. (2005). Phreatophytic Vegetation and Groundwater Fluctuations: A Review of Current Research and Application of Ecosystem Response Modeling with an Emphasis on Great Basin Vegetation. Environmental Management, 35(6), 726-740. doi:10.1007/s00267-004-0194-7

Neff, K. P., & Baldwin, A. H. (2005). Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh. Wetlands, 25(2), 392-404. doi:10.1672/14

PADILLA, F. M., & PUGNAIRE, F. I. (2007). Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21(3), 489-495. doi:10.1111/j.1365-2435.2007.01267.x

Pasquato, M., Medici, C., Friend, A. D., & Francés, F. (2014). Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology, 8(6), 1024-1036. doi:10.1002/eco.1559

Perona, P., Camporeale, C., Perucca, E., Savina, M., Molnar, P., Burlando, P., & Ridolfi, L. (2009). Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquatic Sciences, 71(3), 266-278. doi:10.1007/s00027-009-9215-1

Perucca, E., Camporeale, C., & Ridolfi, L. (2006). Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research, 111(G1). doi:10.1029/2005jg000073

Polley, H. W., Phillips, R. L., Frank, A. B., Bradford, J. A., Sims, P. L., Morgan, J. A., & Kiniry, J. R. (2010). Variability in Light-Use Efficiency for Gross Primary Productivity on Great Plains Grasslands. Ecosystems, 14(1), 15-27. doi:10.1007/s10021-010-9389-3

Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 725-744. doi:10.1016/s0309-1708(01)00006-9

Quevedo, D. I., & Francés, F. (2008). A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12(5), 1175-1187. doi:10.5194/hess-12-1175-2008

Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 695-705. doi:10.1016/s0309-1708(01)00004-5

Rood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113

Ryel, R., Caldwell, M., Yoder, C., Or, D., & Leffler, A. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173-184. doi:10.1007/s004420100794

Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90(3), 480-494. doi:10.1046/j.1365-2745.2002.00682.x

Scott RL Goodrich DC Levick LR 2003 A GIS-based management tool to quantify riparian vegetation groundwater use 222 227

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., … Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161-185. doi:10.1046/j.1365-2486.2003.00569.x

Soetaert, K., Hoffmann, M., Meire, P., Starink, M., Oevelen, D. van, Regenmortel, S. V., & Cox, T. (2004). Modeling growth and carbon allocation in two reed beds (Phragmites australis) in the Scheldt estuary. Aquatic Botany, 79(3), 211-234. doi:10.1016/j.aquabot.2004.02.001

Stevens LE Waring LG 1985 The effects of prolonged flooding on the riparian plant community in Grand Canyon

Tabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.x

Tabacchi, E., Planty-Tabacchi, A.-M., Roques, L., & Nadal, E. (2005). Seed inputs in riparian zones: implications for plant invasion. River Research and Applications, 21(2-3), 299-313. doi:10.1002/rra.848

TURNER, D. P., URBANSKI, S., BREMER, D., WOFSY, S. C., MEYERS, T., GOWER, S. T., & GREGORY, M. (2003). A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 9(3), 383-395. doi:10.1046/j.1365-2486.2003.00573.x

Wade, A. J., Hornberger, G. M., Whitehead, P. G., Jarvie, H. P., & Flynn, N. (2001). On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis. Water Resources Research, 37(11), 2777-2792. doi:10.1029/2000wr000115

Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. doi:10.1016/j.jhydrol.2005.07.022

Woodward, F. I., & Cramer, W. (1996). Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7(3), 306-308. doi:10.1111/j.1654-1103.1996.tb00489.x

Ye, F., Chen, Q., Blanckaert, K., & Ma, J. (2012). Riparian vegetation dynamics: insight provided by a process-based model, a statistical model and field data. Ecohydrology, 6(4), 567-585. doi:10.1002/eco.1348

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., … Wofsy, S. C. (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3-4), 189-207. doi:10.1016/j.agrformet.2006.12.001

Zheng, Z., & Wang, G. (2007). Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4), n/a-n/a. doi:10.1029/2007jg000413

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem