- -

Influence of liposome encapsulated essential oils on properties of chitosan films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of liposome encapsulated essential oils on properties of chitosan films

Mostrar el registro completo del ítem

Valencia-Sullca, CE.; Jiménez Serrallé, M.; Jiménez Marco, A.; Atarés Huerta, LM.; Vargas, M.; Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International (Online). 65(8):979-987. https://doi.org/10.1002/pi.5143

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/97801

Ficheros en el ítem

Metadatos del ítem

Título: Influence of liposome encapsulated essential oils on properties of chitosan films
Autor: Valencia-Sullca, Cristina Encarnación Jiménez Serrallé, Miriam Jiménez Marco, Alberto Atarés Huerta, Lorena María Vargas, Maria Chiralt, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] The effect of the encapsulation of eugenol and cinnamon leaf essential oil (CLEO) in lecithin liposomes on the losses of these compounds during the chitosan film formation process by casting was evaluated. Film-forming ...[+]
Palabras clave: Chitosan , Eugenol , Liposome , Lecithin , Cinnamon leaf essential oil , Encapsulation
Derechos de uso: Reserva de todos los derechos
Fuente:
Polymer International (Online). (eissn: 1097-0126 )
DOI: 10.1002/pi.5143
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/pi.5143
Título del congreso: 5th International Conference on Biobased and Biodegradable Polymers (BIOPOL 2015)
Lugar del congreso: Donostia-San Sebastián, Spain
Fecha congreso: October 06-09, 2015
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2010%2F082/
info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/
Agradecimientos:
The authors acknowledge the financial support provided by the Ministerio de Economía y Competitividad (Project AGL2013-42989-R). Cristina Valencia Sullca thanks the Programa Nacional de Becas del Perú (Pronabec) for the ...[+]
Tipo: Artículo Comunicación en congreso

References

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695-702. doi:10.1016/j.jfoodeng.2013.01.010

Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57(1), 83-88. doi:10.1016/j.carbpol.2004.04.003

Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003 [+]
Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695-702. doi:10.1016/j.jfoodeng.2013.01.010

Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57(1), 83-88. doi:10.1016/j.carbpol.2004.04.003

Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003

Singh, G., Maurya, S., deLampasona, M. P., & Catalan, C. A. N. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9), 1650-1661. doi:10.1016/j.fct.2007.02.031

Bajpai, V. K., Baek, K.-H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722-734. doi:10.1016/j.foodres.2011.04.052

Shah, B., Davidson, P. M., & Zhong, Q. (2013). Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. International Journal of Food Microbiology, 161(1), 53-59. doi:10.1016/j.ijfoodmicro.2012.11.020

Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C., & Greige-Gerges, H. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52-62. doi:10.1016/j.foodchem.2015.01.067

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001

Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. doi:10.1016/j.jfoodeng.2011.02.028

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106

Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., … Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427-435. doi:10.1016/j.foodhyd.2014.06.017

Imran, M., Revol-Junelles, A.-M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., … Desobry, S. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 29(2), 407-419. doi:10.1016/j.foodhyd.2012.04.010

Zhang, H. Y., Arab Tehrany, E., Kahn, C. J. F., Ponçot, M., Linder, M., & Cleymand, F. (2012). Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 88(2), 618-627. doi:10.1016/j.carbpol.2012.01.007

Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169. doi:10.1016/j.foodhyd.2013.05.006

Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451. doi:10.1046/j.1472-765x.2003.01427.x

McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x

Hutchings, J. B. (1999). Food Colour and Appearance. doi:10.1007/978-1-4615-2373-4

Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004

Leceta, I., Guerrero, P., & de la Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93(1), 339-346. doi:10.1016/j.carbpol.2012.04.031

Pérez-Gago, M. B., & Krochta, J. M. (2001). Lipid Particle Size Effect on Water Vapor Permeability and Mechanical Properties of Whey Protein/Beeswax Emulsion Films. Journal of Agricultural and Food Chemistry, 49(2), 996-1002. doi:10.1021/jf000615f

Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393-400. doi:10.1016/j.jfoodeng.2007.07.022

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23(8), 2102-2109. doi:10.1016/j.foodhyd.2009.05.006

McHugh, T. H., & Krochta, J. M. (1994). Water vapor permeability properties of edible whey protein-lipid emulsion films. Journal of the American Oil Chemists’ Society, 71(3), 307-312. doi:10.1007/bf02638058

Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375. doi:10.1016/j.carbpol.2007.09.002

Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24(4), 384-391. doi:10.1016/j.foodhyd.2009.11.004

Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166. doi:10.1016/j.foodchem.2010.02.033

Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015

Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075

Van Roon, A., Parsons, J. R., & Govers, H. A. . (2002). Gas chromatographic determination of vapour pressure and related thermodynamic properties of monoterpenes and biogenically related compounds. Journal of Chromatography A, 955(1), 105-115. doi:10.1016/s0021-9673(02)00200-5

Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703-714. doi:10.1016/j.fm.2004.02.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem