- -

Influence of liposome encapsulated essential oils on properties of chitosan films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of liposome encapsulated essential oils on properties of chitosan films

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Valencia-Sullca, Cristina Encarnación es_ES
dc.contributor.author Jiménez Serrallé, Miriam es_ES
dc.contributor.author Jiménez Marco, Alberto es_ES
dc.contributor.author Atarés Huerta, Lorena María es_ES
dc.contributor.author Vargas, Maria es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2018-02-13T08:57:01Z
dc.date.available 2018-02-13T08:57:01Z
dc.date.issued 2016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97801
dc.description.abstract [EN] The effect of the encapsulation of eugenol and cinnamon leaf essential oil (CLEO) in lecithin liposomes on the losses of these compounds during the chitosan film formation process by casting was evaluated. Film-forming dispersions and films with eugenol or CLEO (either free or encapsulated) were obtained and characterized. The content of eugenol in active films was quantified by means of solvent extraction and gas chromatograph analysis. The encapsulation of eugenol or CLEO in lecithin liposomes led to the films retaining 40% −50% of the incorporated eugenol, whereas only 1%−2% was retained when eugenol was incorporated by direct emulsification. Films with liposomes exhibited a lamellar microstructure which improved film extensibility and increased water vapour barrier capacity with respect to those with free emulsified compounds. Liposomes also modified the optical properties of the films, reducing their gloss, increasing colour saturation and making them redder in colour. The encapsulation of volatile active compounds in liposomes appears to be a good strategy for obtaining antimicrobial films with essential oils. es_ES
dc.description.sponsorship The authors acknowledge the financial support provided by the Ministerio de Economía y Competitividad (Project AGL2013-42989-R). Cristina Valencia Sullca thanks the Programa Nacional de Becas del Perú (Pronabec) for the completion of her doctoral thesis.
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Polymer International (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chitosan es_ES
dc.subject Eugenol es_ES
dc.subject Liposome es_ES
dc.subject Lecithin es_ES
dc.subject Cinnamon leaf essential oil es_ES
dc.subject Encapsulation es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Influence of liposome encapsulated essential oils on properties of chitosan films es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1002/pi.5143 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2010%2F082/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Valencia-Sullca, CE.; Jiménez Serrallé, M.; Jiménez Marco, A.; Atarés Huerta, LM.; Vargas, M.; Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International (Online). 65(8):979-987. https://doi.org/10.1002/pi.5143 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 5th International Conference on Biobased and Biodegradable Polymers (BIOPOL 2015) es_ES
dc.relation.conferencedate October 06-09, 2015 es_ES
dc.relation.conferenceplace Donostia-San Sebastián, Spain es_ES
dc.relation.publisherversion http://doi.org/10.1002/pi.5143 es_ES
dc.description.upvformatpinicio 979 es_ES
dc.description.upvformatpfin 987 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 65 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1097-0126 es_ES
dc.relation.pasarela S\314037 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695-702. doi:10.1016/j.jfoodeng.2013.01.010 es_ES
dc.description.references Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57(1), 83-88. doi:10.1016/j.carbpol.2004.04.003 es_ES
dc.description.references Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003 es_ES
dc.description.references Singh, G., Maurya, S., deLampasona, M. P., & Catalan, C. A. N. (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9), 1650-1661. doi:10.1016/j.fct.2007.02.031 es_ES
dc.description.references Bajpai, V. K., Baek, K.-H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722-734. doi:10.1016/j.foodres.2011.04.052 es_ES
dc.description.references Shah, B., Davidson, P. M., & Zhong, Q. (2013). Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes in bovine milk. International Journal of Food Microbiology, 161(1), 53-59. doi:10.1016/j.ijfoodmicro.2012.11.020 es_ES
dc.description.references Sebaaly, C., Jraij, A., Fessi, H., Charcosset, C., & Greige-Gerges, H. (2015). Preparation and characterization of clove essential oil-loaded liposomes. Food Chemistry, 178, 52-62. doi:10.1016/j.foodchem.2015.01.067 es_ES
dc.description.references Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 es_ES
dc.description.references Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. doi:10.1016/j.jfoodeng.2011.02.028 es_ES
dc.description.references Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106 es_ES
dc.description.references Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., … Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427-435. doi:10.1016/j.foodhyd.2014.06.017 es_ES
dc.description.references Imran, M., Revol-Junelles, A.-M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., … Desobry, S. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 29(2), 407-419. doi:10.1016/j.foodhyd.2012.04.010 es_ES
dc.description.references Zhang, H. Y., Arab Tehrany, E., Kahn, C. J. F., Ponçot, M., Linder, M., & Cleymand, F. (2012). Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 88(2), 618-627. doi:10.1016/j.carbpol.2012.01.007 es_ES
dc.description.references Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169. doi:10.1016/j.foodhyd.2013.05.006 es_ES
dc.description.references Olasupo, N. A., Fitzgerald, D. J., Gasson, M. J., & Narbad, A. (2003). Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Letters in Applied Microbiology, 37(6), 448-451. doi:10.1046/j.1472-765x.2003.01427.x es_ES
dc.description.references McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x es_ES
dc.description.references Hutchings, J. B. (1999). Food Colour and Appearance. doi:10.1007/978-1-4615-2373-4 es_ES
dc.description.references Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. doi:10.1016/j.tifs.2011.02.004 es_ES
dc.description.references Leceta, I., Guerrero, P., & de la Caba, K. (2013). Functional properties of chitosan-based films. Carbohydrate Polymers, 93(1), 339-346. doi:10.1016/j.carbpol.2012.04.031 es_ES
dc.description.references Pérez-Gago, M. B., & Krochta, J. M. (2001). Lipid Particle Size Effect on Water Vapor Permeability and Mechanical Properties of Whey Protein/Beeswax Emulsion Films. Journal of Agricultural and Food Chemistry, 49(2), 996-1002. doi:10.1021/jf000615f es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2008). Tensile properties and water vapor permeability of sodium caseinate films containing oleic acid–beeswax mixtures. Journal of Food Engineering, 85(3), 393-400. doi:10.1016/j.jfoodeng.2007.07.022 es_ES
dc.description.references Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2009). Characterization of edible films based on hydroxypropylmethylcellulose and tea tree essential oil. Food Hydrocolloids, 23(8), 2102-2109. doi:10.1016/j.foodhyd.2009.05.006 es_ES
dc.description.references McHugh, T. H., & Krochta, J. M. (1994). Water vapor permeability properties of edible whey protein-lipid emulsion films. Journal of the American Oil Chemists’ Society, 71(3), 307-312. doi:10.1007/bf02638058 es_ES
dc.description.references Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375. doi:10.1016/j.carbpol.2007.09.002 es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24(4), 384-391. doi:10.1016/j.foodhyd.2009.11.004 es_ES
dc.description.references Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. doi:10.1016/j.ijbiomac.2014.11.046 es_ES
dc.description.references Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166. doi:10.1016/j.foodchem.2010.02.033 es_ES
dc.description.references Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 23(3), 676-683. doi:10.1016/j.foodhyd.2008.04.015 es_ES
dc.description.references Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 es_ES
dc.description.references Van Roon, A., Parsons, J. R., & Govers, H. A. . (2002). Gas chromatographic determination of vapour pressure and related thermodynamic properties of monoterpenes and biogenically related compounds. Journal of Chromatography A, 955(1), 105-115. doi:10.1016/s0021-9673(02)00200-5 es_ES
dc.description.references Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703-714. doi:10.1016/j.fm.2004.02.008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem