- -

Effect on tomato plant and fruit of the application of biopolymer¿oregano essential oil coatings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect on tomato plant and fruit of the application of biopolymer¿oregano essential oil coatings

Mostrar el registro completo del ítem

Perdones Montero, Á.; Tur, N.; Chiralt, A.; Vargas, M. (2016). Effect on tomato plant and fruit of the application of biopolymer¿oregano essential oil coatings. Journal of the Science of Food and Agriculture. 96(13):4505-4513. https://doi.org/10.1002/jsfa.7666

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/97807

Ficheros en el ítem

Metadatos del ítem

Título: Effect on tomato plant and fruit of the application of biopolymer¿oregano essential oil coatings
Autor: Perdones Montero, Ángela Tur, Núria Chiralt, A. Vargas, Maria
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] BACKGROUND: Oregano essential oil (EO) was incorporated into film-forming dispersions (FFDs) based on biopolymers (chitosan and/or methylcellulose) at two different concentrations. The effect of the application of the ...[+]
Palabras clave: Coating , Pre-harvest , Postharvest , Chitosan , Methylcellulose , Decay
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 )
DOI: 10.1002/jsfa.7666
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/jsfa.7666
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//SP20120518/
info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/
Agradecimientos:
The authors acknowledge the support provided by Universitat Politecnica de Valencia (SP20120518) and the Spanish Ministerio de Economia y Competitividad (AGL2013-42989-R-AR). Angela Perdones is grateful to Universitat ...[+]
Tipo: Artículo

References

Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G., Terrés-Rojas, E., Alia-Tejacal, I., … Bautista-Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Protection, 38, 1-6. doi:10.1016/j.cropro.2012.02.016

Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154

Lima, J. E., Carvalho, R. F., Neto, A. T., Figueira, A., & Peres, L. E. . (2004). Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Science, 167(4), 753-757. doi:10.1016/j.plantsci.2004.05.023 [+]
Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G., Terrés-Rojas, E., Alia-Tejacal, I., … Bautista-Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Protection, 38, 1-6. doi:10.1016/j.cropro.2012.02.016

Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154

Lima, J. E., Carvalho, R. F., Neto, A. T., Figueira, A., & Peres, L. E. . (2004). Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Science, 167(4), 753-757. doi:10.1016/j.plantsci.2004.05.023

Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., … Levy, A. (1997). A new model system for tomato genetics. The Plant Journal, 12(6), 1465-1472. doi:10.1046/j.1365-313x.1997.12061465.x

Matusinsky, P., Zouhar, M., Pavela, R., & Novy, P. (2015). Antifungal effect of five essential oils against important pathogenic fungi of cereals. Industrial Crops and Products, 67, 208-215. doi:10.1016/j.indcrop.2015.01.022

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106

Smith-Palmer, A., Stewart, J., & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18(4), 463-470. doi:10.1006/fmic.2001.0415

Bendahou, M., Muselli, A., Grignon-Dubois, M., Benyoucef, M., Desjobert, J.-M., Bernardini, A.-F., & Costa, J. (2008). Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydrodistillation. Food Chemistry, 106(1), 132-139. doi:10.1016/j.foodchem.2007.05.050

Sari, M., Biondi, D. M., Kaâbeche, M., Mandalari, G., D’Arrigo, M., Bisignano, G., … Ruberto, G. (2006). Chemical composition, antimicrobial and antioxidant activities of the essential oil of several populations of AlgerianOriganum glandulosum Desf. Flavour and Fragrance Journal, 21(6), 890-898. doi:10.1002/ffj.1738

Soylu, E. M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143(3), 183-189. doi:10.1016/j.ijfoodmicro.2010.08.015

Tzortzakis, N. G. (2010). Ethanol, vinegar and Origanum vulgare oil vapour suppress the development of anthracnose rot in tomato fruit. International Journal of Food Microbiology, 142(1-2), 14-18. doi:10.1016/j.ijfoodmicro.2010.05.005

Wogiatzi, E., Gougoulias, N., Papachatzis, A., Vagelas, I., & Chouliaras, N. (2009). Greek Oregano Essential Oils Production, Phytotoxicity and Antifungal Activity. Biotechnology & Biotechnological Equipment, 23(1), 1150-1152. doi:10.1080/13102818.2009.10817630

Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3

Tharanathan, R. N., & Kittur, F. S. (2003). Chitin — The Undisputed Biomolecule of Great Potential. Critical Reviews in Food Science and Nutrition, 43(1), 61-87. doi:10.1080/10408690390826455

SHIEKH, R. A., MALIK, M. A., AL-THABAITI, S. A., & SHIEKH, M. A. (2013). Chitosan as a Novel Edible Coating for Fresh Fruits. Food Science and Technology Research, 19(2), 139-155. doi:10.3136/fstr.19.139

Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511. doi:10.1080/10408390701537344

Nazan Turhan, K., & Şahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459-466. doi:10.1016/s0260-8774(03)00155-9

Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2011). Water interactions and microstructure of chitosan-methylcellulose composite films as affected by ionic concentration. LWT - Food Science and Technology, 44(10), 2290-2295. doi:10.1016/j.lwt.2011.02.018

Badawy, M. E. I., & Rabea, E. I. (2009). Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technology, 51(1), 110-117. doi:10.1016/j.postharvbio.2008.05.018

Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23(2), 536-547. doi:10.1016/j.foodhyd.2008.02.009

Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003

Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164-171. doi:10.1016/j.postharvbio.2006.03.016

Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002

Hernández-Lauzardo, A. N., Velázquez-del Valle, M. G., Veranza-Castelán, L., Melo-Giorgana, G. E., & Guerra-Sánchez, M. G. (2010). Effect of chitosan on three isolates ofRhizopus stoloniferobtained from peach, papaya and tomato. Fruits, 65(4), 245-253. doi:10.1051/fruits/2010020

Ghaouth, A. E., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan Coating to Extend the Storage Life of Tomatoes. HortScience, 27(9), 1016-1018. doi:10.21273/hortsci.27.9.1016

Auerswald, H., Peters, P., Brückner, B., Krumbein, A., & Kuchenbuch, R. (1999). Sensory analysis and instrumental measurements of short-term stored tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 15(3), 323-334. doi:10.1016/s0925-5214(98)00094-5

Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263-271. doi:10.1016/j.postharvbio.2008.07.019

Kader AA Respiration and gas exchange of vegetables Postharvest Physiology of Vegetables Weichmann J Marcel Dekker New York 25 30

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem