Mostrar el registro sencillo del ítem
dc.contributor.author | Perdones Montero, Ángela | es_ES |
dc.contributor.author | Tur, Núria | es_ES |
dc.contributor.author | Chiralt, A. | es_ES |
dc.contributor.author | Vargas, Maria | es_ES |
dc.date.accessioned | 2018-02-13T09:04:48Z | |
dc.date.available | 2018-02-13T09:04:48Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/97807 | |
dc.description.abstract | [EN] BACKGROUND: Oregano essential oil (EO) was incorporated into film-forming dispersions (FFDs) based on biopolymers (chitosan and/or methylcellulose) at two different concentrations. The effect of the application of the FFDs was evaluated on tomato plants (cultivar Micro-Tom) at three different stages of development, and on pre-harvest and postharvest applications on tomato fruit. RESULTS: The application of the FFDs at '3 Leaves' stage caused phytotoxic problems, whichwere lethal when the EO was applied without biopolymers. Even though plant growth and development were delayed, the total biomass and the crop yield were not affected by biopolymer-EO treatments. When the FFDs were applied in the 'Fruit' stage the pre-harvest application of FFDs had no negative effects. All FFDs containing EO significantly reduced the respiration rate of tomato fruit and diminished weight loss during storage. Moreover, biopolymer-EO FFDs led to a decrease in the fungal decay of tomato fruit inoculated with Rhizopus stolonifer spores, as compared with non-treated tomato fruit and those coated with FFDs without EO. CONCLUSION: The application of biopolymer-oregano essential oil coatings has been proven to be an effective treatment to control R. stolonifer in tomato fruit. (C) 2016 Society of Chemical Industry | es_ES |
dc.description.sponsorship | The authors acknowledge the support provided by Universitat Politecnica de Valencia (SP20120518) and the Spanish Ministerio de Economia y Competitividad (AGL2013-42989-R-AR). Angela Perdones is grateful to Universitat Politecnia de Valencia for a FPI grant | |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Coating | es_ES |
dc.subject | Pre-harvest | es_ES |
dc.subject | Postharvest | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | Methylcellulose | es_ES |
dc.subject | Decay | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effect on tomato plant and fruit of the application of biopolymer¿oregano essential oil coatings | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.7666 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120518/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.description.bibliographicCitation | Perdones Montero, Á.; Tur, N.; Chiralt, A.; Vargas, M. (2016). Effect on tomato plant and fruit of the application of biopolymer¿oregano essential oil coatings. Journal of the Science of Food and Agriculture. 96(13):4505-4513. https://doi.org/10.1002/jsfa.7666 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/jsfa.7666 | es_ES |
dc.description.upvformatpinicio | 4505 | es_ES |
dc.description.upvformatpfin | 4513 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 96 | es_ES |
dc.description.issue | 13 | es_ES |
dc.identifier.pmid | 26869236 | |
dc.relation.pasarela | S\316315 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G., Terrés-Rojas, E., Alia-Tejacal, I., … Bautista-Baños, S. (2012). Use of chitosan-based edible coatings in combination with other natural compounds, to control Rhizopus stolonifer and Escherichia coli DH5α in fresh tomatoes. Crop Protection, 38, 1-6. doi:10.1016/j.cropro.2012.02.016 | es_ES |
dc.description.references | Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154 | es_ES |
dc.description.references | Lima, J. E., Carvalho, R. F., Neto, A. T., Figueira, A., & Peres, L. E. . (2004). Micro-MsK: a tomato genotype with miniature size, short life cycle, and improved in vitro shoot regeneration. Plant Science, 167(4), 753-757. doi:10.1016/j.plantsci.2004.05.023 | es_ES |
dc.description.references | Meissner, R., Jacobson, Y., Melamed, S., Levyatuv, S., Shalev, G., Ashri, A., … Levy, A. (1997). A new model system for tomato genetics. The Plant Journal, 12(6), 1465-1472. doi:10.1046/j.1365-313x.1997.12061465.x | es_ES |
dc.description.references | Matusinsky, P., Zouhar, M., Pavela, R., & Novy, P. (2015). Antifungal effect of five essential oils against important pathogenic fungi of cereals. Industrial Crops and Products, 67, 208-215. doi:10.1016/j.indcrop.2015.01.022 | es_ES |
dc.description.references | Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106 | es_ES |
dc.description.references | Smith-Palmer, A., Stewart, J., & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18(4), 463-470. doi:10.1006/fmic.2001.0415 | es_ES |
dc.description.references | Bendahou, M., Muselli, A., Grignon-Dubois, M., Benyoucef, M., Desjobert, J.-M., Bernardini, A.-F., & Costa, J. (2008). Antimicrobial activity and chemical composition of Origanum glandulosum Desf. essential oil and extract obtained by microwave extraction: Comparison with hydrodistillation. Food Chemistry, 106(1), 132-139. doi:10.1016/j.foodchem.2007.05.050 | es_ES |
dc.description.references | Sari, M., Biondi, D. M., Kaâbeche, M., Mandalari, G., D’Arrigo, M., Bisignano, G., … Ruberto, G. (2006). Chemical composition, antimicrobial and antioxidant activities of the essential oil of several populations of AlgerianOriganum glandulosum Desf. Flavour and Fragrance Journal, 21(6), 890-898. doi:10.1002/ffj.1738 | es_ES |
dc.description.references | Soylu, E. M., Kurt, Ş., & Soylu, S. (2010). In vitro and in vivo antifungal activities of the essential oils of various plants against tomato grey mould disease agent Botrytis cinerea. International Journal of Food Microbiology, 143(3), 183-189. doi:10.1016/j.ijfoodmicro.2010.08.015 | es_ES |
dc.description.references | Tzortzakis, N. G. (2010). Ethanol, vinegar and Origanum vulgare oil vapour suppress the development of anthracnose rot in tomato fruit. International Journal of Food Microbiology, 142(1-2), 14-18. doi:10.1016/j.ijfoodmicro.2010.05.005 | es_ES |
dc.description.references | Wogiatzi, E., Gougoulias, N., Papachatzis, A., Vagelas, I., & Chouliaras, N. (2009). Greek Oregano Essential Oils Production, Phytotoxicity and Antifungal Activity. Biotechnology & Biotechnological Equipment, 23(1), 1150-1152. doi:10.1080/13102818.2009.10817630 | es_ES |
dc.description.references | Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of Essential Oils in Bioactive Edible Coatings: A Review. Food Engineering Reviews, 3(1), 1-16. doi:10.1007/s12393-010-9031-3 | es_ES |
dc.description.references | Tharanathan, R. N., & Kittur, F. S. (2003). Chitin — The Undisputed Biomolecule of Great Potential. Critical Reviews in Food Science and Nutrition, 43(1), 61-87. doi:10.1080/10408690390826455 | es_ES |
dc.description.references | SHIEKH, R. A., MALIK, M. A., AL-THABAITI, S. A., & SHIEKH, M. A. (2013). Chitosan as a Novel Edible Coating for Fresh Fruits. Food Science and Technology Research, 19(2), 139-155. doi:10.3136/fstr.19.139 | es_ES |
dc.description.references | Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent Advances in Edible Coatings for Fresh and Minimally Processed Fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496-511. doi:10.1080/10408390701537344 | es_ES |
dc.description.references | Nazan Turhan, K., & Şahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. Journal of Food Engineering, 61(3), 459-466. doi:10.1016/s0260-8774(03)00155-9 | es_ES |
dc.description.references | Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2011). Water interactions and microstructure of chitosan-methylcellulose composite films as affected by ionic concentration. LWT - Food Science and Technology, 44(10), 2290-2295. doi:10.1016/j.lwt.2011.02.018 | es_ES |
dc.description.references | Badawy, M. E. I., & Rabea, E. I. (2009). Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technology, 51(1), 110-117. doi:10.1016/j.postharvbio.2008.05.018 | es_ES |
dc.description.references | Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23(2), 536-547. doi:10.1016/j.foodhyd.2008.02.009 | es_ES |
dc.description.references | Perdones, Á., Vargas, M., Atarés, L., & Chiralt, A. (2014). Physical, antioxidant and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocolloids, 36, 256-264. doi:10.1016/j.foodhyd.2013.10.003 | es_ES |
dc.description.references | Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164-171. doi:10.1016/j.postharvbio.2006.03.016 | es_ES |
dc.description.references | Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32-41. doi:10.1016/j.postharvbio.2012.04.002 | es_ES |
dc.description.references | Hernández-Lauzardo, A. N., Velázquez-del Valle, M. G., Veranza-Castelán, L., Melo-Giorgana, G. E., & Guerra-Sánchez, M. G. (2010). Effect of chitosan on three isolates ofRhizopus stoloniferobtained from peach, papaya and tomato. Fruits, 65(4), 245-253. doi:10.1051/fruits/2010020 | es_ES |
dc.description.references | Ghaouth, A. E., Ponnampalam, R., Castaigne, F., & Arul, J. (1992). Chitosan Coating to Extend the Storage Life of Tomatoes. HortScience, 27(9), 1016-1018. doi:10.21273/hortsci.27.9.1016 | es_ES |
dc.description.references | Auerswald, H., Peters, P., Brückner, B., Krumbein, A., & Kuchenbuch, R. (1999). Sensory analysis and instrumental measurements of short-term stored tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 15(3), 323-334. doi:10.1016/s0925-5214(98)00094-5 | es_ES |
dc.description.references | Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263-271. doi:10.1016/j.postharvbio.2008.07.019 | es_ES |
dc.description.references | Kader AA Respiration and gas exchange of vegetables Postharvest Physiology of Vegetables Weichmann J Marcel Dekker New York 25 30 | es_ES |