- -

Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits

Mostrar el registro completo del ítem

Ortuño-Lizarán, I.; Vilariño, G.; Martínez-Ramos, C.; Monleón Pradas, M.; Vallés Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication. 8(4):1-12. https://doi.org/10.1088/1758-5090/8/4/045011

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/98274

Ficheros en el ítem

Metadatos del ítem

Título: Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits
Autor: Ortuño-Lizarán, Isabel Vilariño, Guillermo Martínez-Ramos, Cristina Monleón Pradas, Manuel Vallés Lluch, Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Hydrogels have widely been proposed lately as strategies for neural tissue regeneration, but there are still some issues to be solved before their efficient use in tissue engineering of trauma, stroke or the idiopathic ...[+]
Palabras clave: Hyaluronan , Scaffold , Nerve conduit , Schwann cell , Degradability
Derechos de uso: Reserva de todos los derechos
Fuente:
Biofabrication. (issn: 1758-5082 )
DOI: 10.1088/1758-5090/8/4/045011
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1758-5090/8/4/045011
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//PRI-PIMNEU-2011-1372/ES/MATERIALES BIFUNCIONALES PARA LA REGENERACION NEURAL DE AREAS AFECTADAS POR ICTUS/
info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/
info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-03/ES/CONSTRUCTOS PARA LA REGENERACION GUIADA DE ESTRUCTURAS DEL SISTEMA NERVIOSO CENTRAL/
Agradecimientos:
The authors acknowledge Spanish Ministerio de Ciencia e Innovacion through projects PRI-PIMNEU-2011-1372 (ERANET-Neuron), MAT2011-28791-C03-02 and -03. I. Ortuno Lizaran acknowledges support by CIBER-BBN starting grant.
Tipo: Artículo

References

Devos, D., Moreau, C., Dujardin, K., Cabantchik, I., Defebvre, L., & Bordet, R. (2013). New Pharmacological Options for Treating Advanced Parkinson’s Disease. Clinical Therapeutics, 35(10), 1640-1652. doi:10.1016/j.clinthera.2013.08.011

Speed, C. A. (2001). Therapeutic ultrasound in soft tissue lesions. Rheumatology, 40(12), 1331-1336. doi:10.1093/rheumatology/40.12.1331

Jibuike, O. O. (2003). Management of soft tissue knee injuries in an accident and emergency department: the effect of the introduction of a physiotherapy practitioner. Emergency Medicine Journal, 20(1), 37-39. doi:10.1136/emj.20.1.37 [+]
Devos, D., Moreau, C., Dujardin, K., Cabantchik, I., Defebvre, L., & Bordet, R. (2013). New Pharmacological Options for Treating Advanced Parkinson’s Disease. Clinical Therapeutics, 35(10), 1640-1652. doi:10.1016/j.clinthera.2013.08.011

Speed, C. A. (2001). Therapeutic ultrasound in soft tissue lesions. Rheumatology, 40(12), 1331-1336. doi:10.1093/rheumatology/40.12.1331

Jibuike, O. O. (2003). Management of soft tissue knee injuries in an accident and emergency department: the effect of the introduction of a physiotherapy practitioner. Emergency Medicine Journal, 20(1), 37-39. doi:10.1136/emj.20.1.37

Berry, M. (1986). Neurogenesis and gliogenesis in the human brain. Food and Chemical Toxicology, 24(2), 79-89. doi:10.1016/0278-6915(86)90341-8

Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313-1317. doi:10.1038/3305

Murrell, W., Bushell, G. R., Livesey, J., McGrath, J., MacDonald, K. P. A., Bates, P. R., & Mackay-Sim, A. (1996). Neurogenesis in adult human. NeuroReport, 7(6), 1189-1194. doi:10.1097/00001756-199604260-00019

Alvarez-Buylla, A., & Garcı́a-Verdugo, J. M. (2002). Neurogenesis in Adult Subventricular Zone. The Journal of Neuroscience, 22(3), 629-634. doi:10.1523/jneurosci.22-03-00629.2002

Braak, H., & Del Tredici, K. (2008). Assessing fetal nerve cell grafts in Parkinson’s disease. Nature Medicine, 14(5), 483-485. doi:10.1038/nm0508-483

Tennstaedt, A., Aswendt, M., Adamczak, J., Collienne, U., Selt, M., Schneider, G., … Hoehn, M. (2015). Human neural stem cell intracerebral grafts show spontaneous early neuronal differentiation after several weeks. Biomaterials, 44, 143-154. doi:10.1016/j.biomaterials.2014.12.038

Papastefanaki, F., Chen, J., Lavdas, A. A., Thomaidou, D., Schachner, M., & Matsas, R. (2007). Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain, 130(8), 2159-2174. doi:10.1093/brain/awm155

Fortun, J., Hill, C. E., & Bunge, M. B. (2009). Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neuroscience Letters, 456(3), 124-132. doi:10.1016/j.neulet.2008.08.092

Grandhi, R., Ricks, C., Shin, S., & Becker, C. (2014). Extracellular matrices, artificial neural scaffolds and the promise of neural regeneration. Neural Regeneration Research, 9(17), 1573. doi:10.4103/1673-5374.141778

Schmidt, C. E., & Leach, J. B. (2003). Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering, 5(1), 293-347. doi:10.1146/annurev.bioeng.5.011303.120731

Olson, H. E., Rooney, G. E., Gross, L., Nesbitt, J. J., Galvin, K. E., Knight, A., … Windebank, A. J. (2009). Neural Stem Cell– and Schwann Cell–Loaded Biodegradable Polymer Scaffolds Support Axonal Regeneration in the Transected Spinal Cord. Tissue Engineering Part A, 15(7), 1797-1805. doi:10.1089/ten.tea.2008.0364

Sinis, N., Schaller, H.-E., Schulte-Eversum, C., Schlosshauer, B., Doser, M., Dietz, K., … Haerle, M. (2005). Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. Journal of Neurosurgery, 103(6), 1067-1076. doi:10.3171/jns.2005.103.6.1067

Hudson, T. W., Evans, G. R. D., & Schmidt, C. E. (2000). ENGINEERING STRATEGIES FOR PERIPHERAL NERVE REPAIR. Orthopedic Clinics of North America, 31(3), 485-497. doi:10.1016/s0030-5898(05)70166-8

Jansen, K., van der Werff, J. F. ., van Wachem, P. ., Nicolai, J.-P. ., de Leij, L. F. M. ., & van Luyn, M. J. . (2004). A hyaluronan-based nerve guide: in vitro cytotoxicity, subcutaneous tissue reactions, and degradation in the rat. Biomaterials, 25(3), 483-489. doi:10.1016/s0142-9612(03)00544-1

Lam, J., Truong, N. F., & Segura, T. (2014). Design of cell–matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomaterialia, 10(4), 1571-1580. doi:10.1016/j.actbio.2013.07.025

Lei, Y., Gojgini, S., Lam, J., & Segura, T. (2011). The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32(1), 39-47. doi:10.1016/j.biomaterials.2010.08.103

HARDINGHAM, T. (2004). Solution Properties of Hyaluronan. Chemistry and Biology of Hyaluronan, 1-19. doi:10.1016/b978-008044382-9/50032-7

Day, A. J., & de la Motte, C. A. (2005). Hyaluronan cross-linking: a protective mechanism in inflammation? Trends in Immunology, 26(12), 637-643. doi:10.1016/j.it.2005.09.009

Milner, C. M., Higman, V. A., & Day, A. J. (2006). TSG-6: a pluripotent inflammatory mediator? Biochemical Society Transactions, 34(3), 446-450. doi:10.1042/bst0340446

West, D., Hampson, I., Arnold, F., & Kumar, S. (1985). Angiogenesis induced by degradation products of hyaluronic acid. Science, 228(4705), 1324-1326. doi:10.1126/science.2408340

L. Hallén, C. Johansson, C. Laurent. (1999). Cross-linked Hyaluronan (Hylan B Gel): a New Injectable Remedy for Treatment of Vocal Fold Insufficiency - an Animal Study. Acta Oto-Laryngologica, 119(1), 107-111. doi:10.1080/00016489950182043

Collins, M. N., & Birkinshaw, C. (2007). Comparison of the effectiveness of four different crosslinking agents with hyaluronic acid hydrogel films for tissue-culture applications. Journal of Applied Polymer Science, 104(5), 3183-3191. doi:10.1002/app.25993

Ibrahim, S., Kang, Q. K., & Ramamurthi, A. (2010). The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. Journal of Biomedical Materials Research Part A, 9999A, NA-NA. doi:10.1002/jbm.a.32704

Rnjak-Kovacina, J., Wray, L. S., Burke, K. A., Torregrosa, T., Golinski, J. M., Huang, W., & Kaplan, D. L. (2015). Lyophilized Silk Sponges: A Versatile Biomaterial Platform for Soft Tissue Engineering. ACS Biomaterials Science & Engineering, 1(4), 260-270. doi:10.1021/ab500149p

Yu, C., Bianco, J., Brown, C., Fuetterer, L., Watkins, J. F., Samani, A., & Flynn, L. E. (2013). Porous decellularized adipose tissue foams for soft tissue regeneration. Biomaterials, 34(13), 3290-3302. doi:10.1016/j.biomaterials.2013.01.056

Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040

Trinder, P. (1969). Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 22(2), 158-161. doi:10.1136/jcp.22.2.158

Fu, J. C., Hagemeir, C., Moyer, D. L., & Ng, E. W. (1976). A unified mathematical model for diffusion from drug-polymer composite tablets. Journal of Biomedical Materials Research, 10(5), 743-758. doi:10.1002/jbm.820100507

Kim, J. K., Kim, H. J., Chung, J.-Y., Lee, J.-H., Young, S.-B., & Kim, Y.-H. (2013). Natural and synthetic biomaterials for controlled drug delivery. Archives of Pharmacal Research, 37(1), 60-68. doi:10.1007/s12272-013-0280-6

Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., & Dehghani, F. (2010). Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Engineering Part B: Reviews, 16(4), 371-383. doi:10.1089/ten.teb.2009.0639

GRIBBON, P., HENG, B. C., & HARDINGHAM, T. E. (2000). The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain–chain association. Biochemical Journal, 350(1), 329-335. doi:10.1042/bj3500329

Bitar, K. N., & Zakhem, E. (2014). Design Strategies of Biodegradable Scaffolds for Tissue Regeneration. Biomedical Engineering and Computational Biology, 6, BECB.S10961. doi:10.4137/becb.s10961

Ojha, B., & Das, G. (2011). Role of hydrophobic and polar interactions for BSA–amphiphile composites. Chemistry and Physics of Lipids, 164(2), 144-150. doi:10.1016/j.chemphyslip.2010.12.004

Martins, M., Azoia, N. G., Shimanovich, U., Matamá, T., Gomes, A. C., Silva, C., & Cavaco-Paulo, A. (2014). Design of Novel BSA/Hyaluronic Acid Nanodispersions for Transdermal Pharma Purposes. Molecular Pharmaceutics, 11(5), 1479-1488. doi:10.1021/mp400657g

Chen, J.-P., Chen, S.-H., Chen, C.-H., & Shalumon, K. T. (2014). Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. International Journal of Nanomedicine, 4079. doi:10.2147/ijn.s67931

Smit, X., van Neck, J. W., Afoke, A., & Hovius, S. E. R. (2004). Reduction of neural adhesions by biodegradable autocrosslinked hyaluronic acid gel after injury of peripheral nerves: an experimental study. Journal of Neurosurgery, 101(4), 648-652. doi:10.3171/jns.2004.101.4.0648

Erturk, S., Yuceyar, S., Temiz, M., Ekci, B., Sakoglu, N., Balci, H., … Saner, H. (2003). Effects of Hyaluronic Acid-Carboxymethylcellulose Antiadhesion Barrier on Ischemic Colonic Anastomosis. Diseases of the Colon & Rectum, 46(4), 529-534. doi:10.1007/s10350-004-6594-1

Godinho, M. J., Teh, L., Pollett, M. A., Goodman, D., Hodgetts, S. I., Sweetman, I., … Harvey, A. R. (2013). Immunohistochemical, Ultrastructural and Functional Analysis of Axonal Regeneration through Peripheral Nerve Grafts Containing Schwann Cells Expressing BDNF, CNTF or NT3. PLoS ONE, 8(8), e69987. doi:10.1371/journal.pone.0069987

Nie, X., Deng, M., Yang, M., Liu, L., Zhang, Y., & Wen, X. (2013). Axonal Regeneration and Remyelination Evaluation of Chitosan/Gelatin-Based Nerve Guide Combined with Transforming Growth Factor-β1 and Schwann Cells. Cell Biochemistry and Biophysics, 68(1), 163-172. doi:10.1007/s12013-013-9683-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem