- -

Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management

Mostrar el registro completo del ítem

Estruch, VD.; Mayer-González, P.; Roig, B.; Jover Cerda, M. (2017). Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management. Aquaculture Research. 48(12):5901-5912. doi:10.1111/are.13414

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/98347

Ficheros en el ítem

Metadatos del ítem

Título: Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management
Autor: Estruch, V. D. Mayer-González, Pablo Roig, Bernardino Jover Cerdá, Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Fecha de fin de embargo: 2018-12-31
Resumen:
[EN] In this work, a seasonal quantile regression growth model for the gilthead sea bream (Sparus aurata L) based on an aggregation of the quantile TGC models with exponent 1/3 and 2/3, named the Quantile TGC-Mixed Model, ...[+]
Palabras clave: Fish farm management , Growth in marine cages , Modelling fish growth , Quantile regression , Thermal growth coefficient
Derechos de uso: Reserva de todos los derechos
Fuente:
Aquaculture Research. (issn: 1355-557X )
DOI: 10.1111/are.13414
Editorial:
Blackwell Publishing
Versión del editor: http://doi.org/10.1111/are.13414
Tipo: Artículo

References

Akamine, T. (1993). A New Standard Formula for Seasonal Growth of Fish in Population Dynamics. NIPPON SUISAN GAKKAISHI, 59(11), 1857-1863. doi:10.2331/suisan.59.1857

ARANEDA, M. E., HERNÁNDEZ, J. M., & GASCA-LEYVA, E. (2011). OPTIMAL HARVESTING TIME OF FARMED AQUATIC POPULATIONS WITH NONLINEAR SIZE-HETEROGENEOUS GROWTH. Natural Resource Modeling, 24(4), 477-513. doi:10.1111/j.1939-7445.2011.00099.x

Araneda, M. E., Hernández, J. M., Gasca-Leyva, E., & Vela, M. A. (2013). Growth modelling including size heterogeneity: Application to the intensive culture of white shrimp (P. vannamei) in freshwater. Aquacultural Engineering, 56, 1-12. doi:10.1016/j.aquaeng.2013.03.003 [+]
Akamine, T. (1993). A New Standard Formula for Seasonal Growth of Fish in Population Dynamics. NIPPON SUISAN GAKKAISHI, 59(11), 1857-1863. doi:10.2331/suisan.59.1857

ARANEDA, M. E., HERNÁNDEZ, J. M., & GASCA-LEYVA, E. (2011). OPTIMAL HARVESTING TIME OF FARMED AQUATIC POPULATIONS WITH NONLINEAR SIZE-HETEROGENEOUS GROWTH. Natural Resource Modeling, 24(4), 477-513. doi:10.1111/j.1939-7445.2011.00099.x

Araneda, M. E., Hernández, J. M., Gasca-Leyva, E., & Vela, M. A. (2013). Growth modelling including size heterogeneity: Application to the intensive culture of white shrimp (P. vannamei) in freshwater. Aquacultural Engineering, 56, 1-12. doi:10.1016/j.aquaeng.2013.03.003

Baer, A., Schulz, C., Traulsen, I., & Krieter, J. (2010). Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models. Aquaculture International, 19(3), 497-511. doi:10.1007/s10499-010-9365-0

Cade, B. S., & Noon, B. R. (2003). A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment, 1(8), 412-420. doi:10.1890/1540-9295(2003)001[0412:agitqr]2.0.co;2

Cho, C. Y. (1992). Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture, 100(1-3), 107-123. doi:10.1016/0044-8486(92)90353-m

Domínguez-May, R., Hernández, J. M., Gasca-Leyva, E., & Poot-López, G. R. (2011). EFFECT OF RATION AND SIZE HETEROGENEITY ON HARVEST TIME: TILAPIA CULTURE IN YUCATAN, MEXICO. Aquaculture Economics & Management, 15(4), 278-301. doi:10.1080/13657305.2011.624575

Dumas, A., & France, J. (2008). Modelling the ontogeny of ectotherms exhibiting indeterminate growth. Journal of Theoretical Biology, 254(1), 76-81. doi:10.1016/j.jtbi.2008.05.005

Dumas, A., France, J., & Bureau, D. P. (2007). Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture, 267(1-4), 139-146. doi:10.1016/j.aquaculture.2007.01.041

Dumas, A., France, J., & Bureau, D. (2010). Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, 41(2), 161-181. doi:10.1111/j.1365-2109.2009.02323.x

Fontoura, N. F., & Agostinho, A. A. (1996). Growth with seasonally varying temperatures: an expansion of the von Bertalanffy growth model. Journal of Fish Biology, 48(4), 569-584. doi:10.1111/j.1095-8649.1996.tb01453.x

Gasca-Leyva, E., Hernández, J. M., & Veliov, V. M. (2008). Optimal harvesting time in a size-heterogeneous population. Ecological Modelling, 210(1-2), 161-168. doi:10.1016/j.ecolmodel.2007.07.018

Hernández, J. M., Gasca-Leyva, E., León, C. J., & Vergara, J. . (2003). A growth model for gilthead seabream (Sparus aurata). Ecological Modelling, 165(2-3), 265-283. doi:10.1016/s0304-3800(03)00095-4

Koenker , R. 2008 quantreg: Quantile Regression http://www.r-project.org

Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33. doi:10.2307/1913643

Koenker, R., & Bassett, G. (1982). Robust Tests for Heteroscedasticity Based on Regression Quantiles. Econometrica, 50(1), 43. doi:10.2307/1912528

Koenker, R., & Machado, J. A. F. (1999). Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296-1310. doi:10.1080/01621459.1999.10473882

León, C. J., Hernández, J. M., & Gasca‐Leyva, E. (2001). Cost minimization and input substitution in the production of gilthead seabream. Aquaculture Economics & Management, 5(3-4), 147-170. doi:10.1080/13657300109380284

León, C. J., Hernández, J. M., & León-Santana, M. (2006). The effects of water temperature in aquaculture management. Applied Economics, 38(18), 2159-2168. doi:10.1080/00036840500427379

Libralato, S., & Solidoro, C. (2008). A bioenergetic growth model for comparing Sparus aurata’s feeding experiments. Ecological Modelling, 214(2-4), 325-337. doi:10.1016/j.ecolmodel.2008.02.024

Martínez-Llorens, S., Vidal, A. T., & Cerdá, M. J. (2011). A new tool for determining the optimum fish meal and vegetable meals in diets for maximizing the economic profitability of gilthead sea bream (Sparus aurata, L.) feeding. Aquaculture Research, 43(11), 1697-1709. doi:10.1111/j.1365-2109.2011.02977.x

Mayer, P., Estruch, V., Blasco, J., & Jover, M. (2008). Predicting the growth of gilthead sea bream (Sparus aurata L.) farmed in marine cages under real production conditions using temperature- and time-dependent models. Aquaculture Research, 39(10), 1046-1052. doi:10.1111/j.1365-2109.2008.01963.x

Mayer, P., Estruch, V. D., & Jover, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture, 358-359, 6-13. doi:10.1016/j.aquaculture.2012.06.016

Mayer, P., Estruch, V., Martí, P., & Jover, M. (2009). Use of quantile regression and discriminant analysis to describe growth patterns in farmed gilthead sea bream (Sparus aurata). Aquaculture, 292(1-2), 30-36. doi:10.1016/j.aquaculture.2009.03.035

Moses, M. E., Hou, C., Woodruff, W. H., West, G. B., Nekola, J. C., Zuo, W., & Brown, J. H. (2008). Revisiting a Model of Ontogenetic Growth: Estimating Model Parameters from Theory and Data. The American Naturalist, 171(5), 632-645. doi:10.1086/587073

Sanchez-Zazueta, E., Hernández, J. M., & Martinez-Cordero, F. J. (2011). Stocking density and date decisions in semi-intensive shrimpLitopenaeus vannamei(Boone, 1931) farming: a bioeconomic approach. Aquaculture Research, 44(4), 574-587. doi:10.1111/j.1365-2109.2011.03060.x

Seginer, I., & Ben-Asher, R. (2011). Optimal harvest size in aquaculture, with RAS cultured sea bream (Sparus aurata) as an example. Aquacultural Engineering, 44(3), 55-64. doi:10.1016/j.aquaeng.2011.03.001

Seginer, I., & Halachmi, I. (2008). Optimal stocking in intensive aquaculture under sinusoidal temperature, price and marketing conditions. Aquacultural Engineering, 39(2-3), 103-112. doi:10.1016/j.aquaeng.2008.09.002

Vaz, S., Martin, C. S., Eastwood, P. D., Ernande, B., Carpentier, A., Meaden, G. J., & Coppin, F. (2007). Modelling species distributions using regression quantiles. Journal of Applied Ecology, 45(1), 204-217. doi:10.1111/j.1365-2664.2007.01392.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem