Mostrar el registro sencillo del ítem
dc.contributor.author | Estruch, V. D. | es_ES |
dc.contributor.author | Mayer-González, Pablo | es_ES |
dc.contributor.author | Roig, Bernardino | es_ES |
dc.contributor.author | Jover Cerdá, Miguel | es_ES |
dc.date.accessioned | 2018-02-23T05:14:26Z | |
dc.date.available | 2018-02-23T05:14:26Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1355-557X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/98347 | |
dc.description.abstract | [EN] In this work, a seasonal quantile regression growth model for the gilthead sea bream (Sparus aurata L) based on an aggregation of the quantile TGC models with exponent 1/3 and 2/3, named the Quantile TGC-Mixed Model, is presented. This model generalizes the proposal of Mayer, Estruch and Jover (Aquaculture, 358-359, 2012, 6) in the sense that the new model is able to describe the evolution of weight distribution throughout an entire production cycle, which could be a powerful tool for fish farm management. The information provided by the model simulations enables us to estimate total fish production and final fish size distribution and helps to design and simulate production and sales plan strategies considering the market price of different fish sizes, in order to increase economic profits. The most interesting alternative in the studied case results in sending all production when 0.25 quantile fish reach 600g, although on each fish farm it would be necessary to evaluate optimum strategy depending on its own quantile regression model, the production cost and the market price. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Aquaculture Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fish farm management | es_ES |
dc.subject | Growth in marine cages | es_ES |
dc.subject | Modelling fish growth | es_ES |
dc.subject | Quantile regression | es_ES |
dc.subject | Thermal growth coefficient | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/are.13414 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-12-31 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Estruch, VD.; Mayer-González, P.; Roig, B.; Jover Cerda, M. (2017). Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management. Aquaculture Research. 48(12):5901-5912. doi:10.1111/are.13414 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1111/are.13414 | es_ES |
dc.description.upvformatpinicio | 5901 | es_ES |
dc.description.upvformatpfin | 5912 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.pasarela | S\346047 | es_ES |
dc.description.references | Akamine, T. (1993). A New Standard Formula for Seasonal Growth of Fish in Population Dynamics. NIPPON SUISAN GAKKAISHI, 59(11), 1857-1863. doi:10.2331/suisan.59.1857 | es_ES |
dc.description.references | ARANEDA, M. E., HERNÁNDEZ, J. M., & GASCA-LEYVA, E. (2011). OPTIMAL HARVESTING TIME OF FARMED AQUATIC POPULATIONS WITH NONLINEAR SIZE-HETEROGENEOUS GROWTH. Natural Resource Modeling, 24(4), 477-513. doi:10.1111/j.1939-7445.2011.00099.x | es_ES |
dc.description.references | Araneda, M. E., Hernández, J. M., Gasca-Leyva, E., & Vela, M. A. (2013). Growth modelling including size heterogeneity: Application to the intensive culture of white shrimp (P. vannamei) in freshwater. Aquacultural Engineering, 56, 1-12. doi:10.1016/j.aquaeng.2013.03.003 | es_ES |
dc.description.references | Baer, A., Schulz, C., Traulsen, I., & Krieter, J. (2010). Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models. Aquaculture International, 19(3), 497-511. doi:10.1007/s10499-010-9365-0 | es_ES |
dc.description.references | Cade, B. S., & Noon, B. R. (2003). A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment, 1(8), 412-420. doi:10.1890/1540-9295(2003)001[0412:agitqr]2.0.co;2 | es_ES |
dc.description.references | Cho, C. Y. (1992). Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture, 100(1-3), 107-123. doi:10.1016/0044-8486(92)90353-m | es_ES |
dc.description.references | Domínguez-May, R., Hernández, J. M., Gasca-Leyva, E., & Poot-López, G. R. (2011). EFFECT OF RATION AND SIZE HETEROGENEITY ON HARVEST TIME: TILAPIA CULTURE IN YUCATAN, MEXICO. Aquaculture Economics & Management, 15(4), 278-301. doi:10.1080/13657305.2011.624575 | es_ES |
dc.description.references | Dumas, A., & France, J. (2008). Modelling the ontogeny of ectotherms exhibiting indeterminate growth. Journal of Theoretical Biology, 254(1), 76-81. doi:10.1016/j.jtbi.2008.05.005 | es_ES |
dc.description.references | Dumas, A., France, J., & Bureau, D. P. (2007). Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture, 267(1-4), 139-146. doi:10.1016/j.aquaculture.2007.01.041 | es_ES |
dc.description.references | Dumas, A., France, J., & Bureau, D. (2010). Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, 41(2), 161-181. doi:10.1111/j.1365-2109.2009.02323.x | es_ES |
dc.description.references | Fontoura, N. F., & Agostinho, A. A. (1996). Growth with seasonally varying temperatures: an expansion of the von Bertalanffy growth model. Journal of Fish Biology, 48(4), 569-584. doi:10.1111/j.1095-8649.1996.tb01453.x | es_ES |
dc.description.references | Gasca-Leyva, E., Hernández, J. M., & Veliov, V. M. (2008). Optimal harvesting time in a size-heterogeneous population. Ecological Modelling, 210(1-2), 161-168. doi:10.1016/j.ecolmodel.2007.07.018 | es_ES |
dc.description.references | Hernández, J. M., Gasca-Leyva, E., León, C. J., & Vergara, J. . (2003). A growth model for gilthead seabream (Sparus aurata). Ecological Modelling, 165(2-3), 265-283. doi:10.1016/s0304-3800(03)00095-4 | es_ES |
dc.description.references | Koenker , R. 2008 quantreg: Quantile Regression http://www.r-project.org | es_ES |
dc.description.references | Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33. doi:10.2307/1913643 | es_ES |
dc.description.references | Koenker, R., & Bassett, G. (1982). Robust Tests for Heteroscedasticity Based on Regression Quantiles. Econometrica, 50(1), 43. doi:10.2307/1912528 | es_ES |
dc.description.references | Koenker, R., & Machado, J. A. F. (1999). Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296-1310. doi:10.1080/01621459.1999.10473882 | es_ES |
dc.description.references | León, C. J., Hernández, J. M., & Gasca‐Leyva, E. (2001). Cost minimization and input substitution in the production of gilthead seabream. Aquaculture Economics & Management, 5(3-4), 147-170. doi:10.1080/13657300109380284 | es_ES |
dc.description.references | León, C. J., Hernández, J. M., & León-Santana, M. (2006). The effects of water temperature in aquaculture management. Applied Economics, 38(18), 2159-2168. doi:10.1080/00036840500427379 | es_ES |
dc.description.references | Libralato, S., & Solidoro, C. (2008). A bioenergetic growth model for comparing Sparus aurata’s feeding experiments. Ecological Modelling, 214(2-4), 325-337. doi:10.1016/j.ecolmodel.2008.02.024 | es_ES |
dc.description.references | Martínez-Llorens, S., Vidal, A. T., & Cerdá, M. J. (2011). A new tool for determining the optimum fish meal and vegetable meals in diets for maximizing the economic profitability of gilthead sea bream (Sparus aurata, L.) feeding. Aquaculture Research, 43(11), 1697-1709. doi:10.1111/j.1365-2109.2011.02977.x | es_ES |
dc.description.references | Mayer, P., Estruch, V., Blasco, J., & Jover, M. (2008). Predicting the growth of gilthead sea bream (Sparus aurata L.) farmed in marine cages under real production conditions using temperature- and time-dependent models. Aquaculture Research, 39(10), 1046-1052. doi:10.1111/j.1365-2109.2008.01963.x | es_ES |
dc.description.references | Mayer, P., Estruch, V. D., & Jover, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture, 358-359, 6-13. doi:10.1016/j.aquaculture.2012.06.016 | es_ES |
dc.description.references | Mayer, P., Estruch, V., Martí, P., & Jover, M. (2009). Use of quantile regression and discriminant analysis to describe growth patterns in farmed gilthead sea bream (Sparus aurata). Aquaculture, 292(1-2), 30-36. doi:10.1016/j.aquaculture.2009.03.035 | es_ES |
dc.description.references | Moses, M. E., Hou, C., Woodruff, W. H., West, G. B., Nekola, J. C., Zuo, W., & Brown, J. H. (2008). Revisiting a Model of Ontogenetic Growth: Estimating Model Parameters from Theory and Data. The American Naturalist, 171(5), 632-645. doi:10.1086/587073 | es_ES |
dc.description.references | Sanchez-Zazueta, E., Hernández, J. M., & Martinez-Cordero, F. J. (2011). Stocking density and date decisions in semi-intensive shrimpLitopenaeus vannamei(Boone, 1931) farming: a bioeconomic approach. Aquaculture Research, 44(4), 574-587. doi:10.1111/j.1365-2109.2011.03060.x | es_ES |
dc.description.references | Seginer, I., & Ben-Asher, R. (2011). Optimal harvest size in aquaculture, with RAS cultured sea bream (Sparus aurata) as an example. Aquacultural Engineering, 44(3), 55-64. doi:10.1016/j.aquaeng.2011.03.001 | es_ES |
dc.description.references | Seginer, I., & Halachmi, I. (2008). Optimal stocking in intensive aquaculture under sinusoidal temperature, price and marketing conditions. Aquacultural Engineering, 39(2-3), 103-112. doi:10.1016/j.aquaeng.2008.09.002 | es_ES |
dc.description.references | Vaz, S., Martin, C. S., Eastwood, P. D., Ernande, B., Carpentier, A., Meaden, G. J., & Coppin, F. (2007). Modelling species distributions using regression quantiles. Journal of Applied Ecology, 45(1), 204-217. doi:10.1111/j.1365-2664.2007.01392.x | es_ES |