- -

Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Estruch, V. D. es_ES
dc.contributor.author Mayer-González, Pablo es_ES
dc.contributor.author Roig, Bernardino es_ES
dc.contributor.author Jover Cerdá, Miguel es_ES
dc.date.accessioned 2018-02-23T05:14:26Z
dc.date.available 2018-02-23T05:14:26Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1355-557X es_ES
dc.identifier.uri http://hdl.handle.net/10251/98347
dc.description.abstract [EN] In this work, a seasonal quantile regression growth model for the gilthead sea bream (Sparus aurata L) based on an aggregation of the quantile TGC models with exponent 1/3 and 2/3, named the Quantile TGC-Mixed Model, is presented. This model generalizes the proposal of Mayer, Estruch and Jover (Aquaculture, 358-359, 2012, 6) in the sense that the new model is able to describe the evolution of weight distribution throughout an entire production cycle, which could be a powerful tool for fish farm management. The information provided by the model simulations enables us to estimate total fish production and final fish size distribution and helps to design and simulate production and sales plan strategies considering the market price of different fish sizes, in order to increase economic profits. The most interesting alternative in the studied case results in sending all production when 0.25 quantile fish reach 600g, although on each fish farm it would be necessary to evaluate optimum strategy depending on its own quantile regression model, the production cost and the market price. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Aquaculture Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fish farm management es_ES
dc.subject Growth in marine cages es_ES
dc.subject Modelling fish growth es_ES
dc.subject Quantile regression es_ES
dc.subject Thermal growth coefficient es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/are.13414 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-12-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Estruch, VD.; Mayer-González, P.; Roig, B.; Jover Cerda, M. (2017). Developing a new tool based on a quantile regression mixed-TGC model for optimizing gilthead sea bream (Sparus aurata L) farm management. Aquaculture Research. 48(12):5901-5912. doi:10.1111/are.13414 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1111/are.13414 es_ES
dc.description.upvformatpinicio 5901 es_ES
dc.description.upvformatpfin 5912 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 48 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\346047 es_ES
dc.description.references Akamine, T. (1993). A New Standard Formula for Seasonal Growth of Fish in Population Dynamics. NIPPON SUISAN GAKKAISHI, 59(11), 1857-1863. doi:10.2331/suisan.59.1857 es_ES
dc.description.references ARANEDA, M. E., HERNÁNDEZ, J. M., & GASCA-LEYVA, E. (2011). OPTIMAL HARVESTING TIME OF FARMED AQUATIC POPULATIONS WITH NONLINEAR SIZE-HETEROGENEOUS GROWTH. Natural Resource Modeling, 24(4), 477-513. doi:10.1111/j.1939-7445.2011.00099.x es_ES
dc.description.references Araneda, M. E., Hernández, J. M., Gasca-Leyva, E., & Vela, M. A. (2013). Growth modelling including size heterogeneity: Application to the intensive culture of white shrimp (P. vannamei) in freshwater. Aquacultural Engineering, 56, 1-12. doi:10.1016/j.aquaeng.2013.03.003 es_ES
dc.description.references Baer, A., Schulz, C., Traulsen, I., & Krieter, J. (2010). Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models. Aquaculture International, 19(3), 497-511. doi:10.1007/s10499-010-9365-0 es_ES
dc.description.references Cade, B. S., & Noon, B. R. (2003). A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment, 1(8), 412-420. doi:10.1890/1540-9295(2003)001[0412:agitqr]2.0.co;2 es_ES
dc.description.references Cho, C. Y. (1992). Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture, 100(1-3), 107-123. doi:10.1016/0044-8486(92)90353-m es_ES
dc.description.references Domínguez-May, R., Hernández, J. M., Gasca-Leyva, E., & Poot-López, G. R. (2011). EFFECT OF RATION AND SIZE HETEROGENEITY ON HARVEST TIME: TILAPIA CULTURE IN YUCATAN, MEXICO. Aquaculture Economics & Management, 15(4), 278-301. doi:10.1080/13657305.2011.624575 es_ES
dc.description.references Dumas, A., & France, J. (2008). Modelling the ontogeny of ectotherms exhibiting indeterminate growth. Journal of Theoretical Biology, 254(1), 76-81. doi:10.1016/j.jtbi.2008.05.005 es_ES
dc.description.references Dumas, A., France, J., & Bureau, D. P. (2007). Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture, 267(1-4), 139-146. doi:10.1016/j.aquaculture.2007.01.041 es_ES
dc.description.references Dumas, A., France, J., & Bureau, D. (2010). Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquaculture Research, 41(2), 161-181. doi:10.1111/j.1365-2109.2009.02323.x es_ES
dc.description.references Fontoura, N. F., & Agostinho, A. A. (1996). Growth with seasonally varying temperatures: an expansion of the von Bertalanffy growth model. Journal of Fish Biology, 48(4), 569-584. doi:10.1111/j.1095-8649.1996.tb01453.x es_ES
dc.description.references Gasca-Leyva, E., Hernández, J. M., & Veliov, V. M. (2008). Optimal harvesting time in a size-heterogeneous population. Ecological Modelling, 210(1-2), 161-168. doi:10.1016/j.ecolmodel.2007.07.018 es_ES
dc.description.references Hernández, J. M., Gasca-Leyva, E., León, C. J., & Vergara, J. . (2003). A growth model for gilthead seabream (Sparus aurata). Ecological Modelling, 165(2-3), 265-283. doi:10.1016/s0304-3800(03)00095-4 es_ES
dc.description.references Koenker , R. 2008 quantreg: Quantile Regression http://www.r-project.org es_ES
dc.description.references Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33. doi:10.2307/1913643 es_ES
dc.description.references Koenker, R., & Bassett, G. (1982). Robust Tests for Heteroscedasticity Based on Regression Quantiles. Econometrica, 50(1), 43. doi:10.2307/1912528 es_ES
dc.description.references Koenker, R., & Machado, J. A. F. (1999). Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296-1310. doi:10.1080/01621459.1999.10473882 es_ES
dc.description.references León, C. J., Hernández, J. M., & Gasca‐Leyva, E. (2001). Cost minimization and input substitution in the production of gilthead seabream. Aquaculture Economics & Management, 5(3-4), 147-170. doi:10.1080/13657300109380284 es_ES
dc.description.references León, C. J., Hernández, J. M., & León-Santana, M. (2006). The effects of water temperature in aquaculture management. Applied Economics, 38(18), 2159-2168. doi:10.1080/00036840500427379 es_ES
dc.description.references Libralato, S., & Solidoro, C. (2008). A bioenergetic growth model for comparing Sparus aurata’s feeding experiments. Ecological Modelling, 214(2-4), 325-337. doi:10.1016/j.ecolmodel.2008.02.024 es_ES
dc.description.references Martínez-Llorens, S., Vidal, A. T., & Cerdá, M. J. (2011). A new tool for determining the optimum fish meal and vegetable meals in diets for maximizing the economic profitability of gilthead sea bream (Sparus aurata, L.) feeding. Aquaculture Research, 43(11), 1697-1709. doi:10.1111/j.1365-2109.2011.02977.x es_ES
dc.description.references Mayer, P., Estruch, V., Blasco, J., & Jover, M. (2008). Predicting the growth of gilthead sea bream (Sparus aurata L.) farmed in marine cages under real production conditions using temperature- and time-dependent models. Aquaculture Research, 39(10), 1046-1052. doi:10.1111/j.1365-2109.2008.01963.x es_ES
dc.description.references Mayer, P., Estruch, V. D., & Jover, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture, 358-359, 6-13. doi:10.1016/j.aquaculture.2012.06.016 es_ES
dc.description.references Mayer, P., Estruch, V., Martí, P., & Jover, M. (2009). Use of quantile regression and discriminant analysis to describe growth patterns in farmed gilthead sea bream (Sparus aurata). Aquaculture, 292(1-2), 30-36. doi:10.1016/j.aquaculture.2009.03.035 es_ES
dc.description.references Moses, M. E., Hou, C., Woodruff, W. H., West, G. B., Nekola, J. C., Zuo, W., & Brown, J. H. (2008). Revisiting a Model of Ontogenetic Growth: Estimating Model Parameters from Theory and Data. The American Naturalist, 171(5), 632-645. doi:10.1086/587073 es_ES
dc.description.references Sanchez-Zazueta, E., Hernández, J. M., & Martinez-Cordero, F. J. (2011). Stocking density and date decisions in semi-intensive shrimpLitopenaeus vannamei(Boone, 1931) farming: a bioeconomic approach. Aquaculture Research, 44(4), 574-587. doi:10.1111/j.1365-2109.2011.03060.x es_ES
dc.description.references Seginer, I., & Ben-Asher, R. (2011). Optimal harvest size in aquaculture, with RAS cultured sea bream (Sparus aurata) as an example. Aquacultural Engineering, 44(3), 55-64. doi:10.1016/j.aquaeng.2011.03.001 es_ES
dc.description.references Seginer, I., & Halachmi, I. (2008). Optimal stocking in intensive aquaculture under sinusoidal temperature, price and marketing conditions. Aquacultural Engineering, 39(2-3), 103-112. doi:10.1016/j.aquaeng.2008.09.002 es_ES
dc.description.references Vaz, S., Martin, C. S., Eastwood, P. D., Ernande, B., Carpentier, A., Meaden, G. J., & Coppin, F. (2007). Modelling species distributions using regression quantiles. Journal of Applied Ecology, 45(1), 204-217. doi:10.1111/j.1365-2664.2007.01392.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem