- -

Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production

Mostrar el registro completo del ítem

Poveda-Reyes, S.; Mellera-Oglialoro, LR.; Martínez-Haya, R.; Gamboa Martínez, TC.; Gómez Ribelles, JL.; Ferrer, G. (2015). Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production. Macromolecular Materials and Engineering. 300(10):977-988. https://doi.org/10.1002/mame.201500033

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/98770

Ficheros en el ítem

Metadatos del ítem

Título: Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production
Autor: POVEDA-REYES, SARA Mellera-Oglialoro, Leonardo Rubén Martínez-Haya, Rebeca Gamboa Martínez, Tatiana Carolina Gómez Ribelles, José Luís Ferrer, G.G.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Short poly-l-lactic acid (PLLA) microfibers have been produced in order to disperse them into the gelatin solution and enable injection in the tissue defect prior to gel formation. Two methods for fabrication of loose ...[+]
Palabras clave: Enzymatic cross-linking , Injectable hydrogels , Microfiber-hydrogel composites , Short microfibers
Derechos de uso: Cerrado
Fuente:
Macromolecular Materials and Engineering. (issn: 1438-7492 )
DOI: 10.1002/mame.201500033
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mame.201500033
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/
info:eu-repo/grantAgreement/MICINN//BES-2011-046144/ES/BES-2011-046144/
Agradecimientos:
The authors are grateful for the financial support received from the Spanish Ministry through the MAT2013-46467-C4-1-R project and the BES-2011-046144 grant. CIBER-BBN is an initiative funded by the VI National R&D&I Plan ...[+]
Tipo: Artículo

References

Da Silva, M. A., Bode, F., Drake, A. F., Goldoni, S., Stevens, M. M., & Dreiss, C. A. (2014). Enzymatically Cross-Linked Gelatin/Chitosan Hydrogels: Tuning Gel Properties and Cellular Response. Macromolecular Bioscience, 14(6), 817-830. doi:10.1002/mabi.201300472

Jayakrishnan, A., & Jameela, S. R. (1996). Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials, 17(5), 471-484. doi:10.1016/0142-9612(96)82721-9

Lai, J.-Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911. doi:10.1007/s10856-010-4035-3 [+]
Da Silva, M. A., Bode, F., Drake, A. F., Goldoni, S., Stevens, M. M., & Dreiss, C. A. (2014). Enzymatically Cross-Linked Gelatin/Chitosan Hydrogels: Tuning Gel Properties and Cellular Response. Macromolecular Bioscience, 14(6), 817-830. doi:10.1002/mabi.201300472

Jayakrishnan, A., & Jameela, S. R. (1996). Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials, 17(5), 471-484. doi:10.1016/0142-9612(96)82721-9

Lai, J.-Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911. doi:10.1007/s10856-010-4035-3

Yang, S.-H., Chen, P.-Q., Chen, Y.-F., & Lin, F.-H. (2005). An In-vitro Study on Regeneration of Human Nucleus Pulposus by Using Gelatin/Chondroitin-6-Sulfate/Hyaluronan Tri-copolymer Scaffold. Artificial Organs, 29(10), 806-814. doi:10.1111/j.1525-1594.2005.00133.x

Hoch, E., Schuh, C., Hirth, T., Tovar, G. E. M., & Borchers, K. (2012). Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. Journal of Materials Science: Materials in Medicine, 23(11), 2607-2617. doi:10.1007/s10856-012-4731-2

Van Den Bulcke, A. I., Bogdanov, B., De Rooze, N., Schacht, E. H., Cornelissen, M., & Berghmans, H. (2000). Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules, 1(1), 31-38. doi:10.1021/bm990017d

Falabella, C. A., & Chen, W. (2009). Cross-Linked Hyaluronic Acid Films to Reduce Intra-Abdominal Postsurgical Adhesions in an Experimental Model. Digestive Surgery, 26(6), 476-481. doi:10.1159/000253872

Cheng, Y., Lu, J., Liu, S., Zhao, P., Lu, G., & Chen, J. (2014). The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydrate Polymers, 107, 57-64. doi:10.1016/j.carbpol.2014.02.034

Bao, T.-Q., Franco, R. A., & Lee, B.-T. (2012). Preparation and characterization of a novel 3D scaffold from poly(ɛ-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochemical Engineering Journal, 64, 76-83. doi:10.1016/j.bej.2012.02.005

Lin, L.-C., Chang, S. J., Lin, C. Y., Lin, Y. T., Chuang, C. W., Yao, C.-H., & Kuo, S. M. (2011). Repair of Chondral Defects With Allogenous Chondrocyte-Seeded Hyaluronan/Collagen II Microspheres in a Rabbit Model. Artificial Organs, 36(4), E102-E109. doi:10.1111/j.1525-1594.2011.01370.x

Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(S4), 467-479. doi:10.1007/s00586-008-0745-3

Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41(6), 2193-2221. doi:10.1039/c1cs15203c

Wang, L.-S., Chung, J. E., Pui-Yik Chan, P., & Kurisawa, M. (2010). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31(6), 1148-1157. doi:10.1016/j.biomaterials.2009.10.042

JIN, R., HIEMSTRA, C., ZHONG, Z., & FEIJEN, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. doi:10.1016/j.biomaterials.2007.02.032

Davis, N. E., Ding, S., Forster, R. E., Pinkas, D. M., & Barron, A. E. (2010). Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation. Biomaterials, 31(28), 7288-7297. doi:10.1016/j.biomaterials.2010.06.003

Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33(5), 1281-1290. doi:10.1016/j.biomaterials.2011.10.067

Yung, C. W., Wu, L. Q., Tullman, J. A., Payne, G. F., Bentley, W. E., & Barbari, T. A. (2007). Transglutaminase crosslinked gelatin as a tissue engineering scaffold. Journal of Biomedical Materials Research Part A, 83A(4), 1039-1046. doi:10.1002/jbm.a.31431

Sakai, S., Hirose, K., Taguchi, K., Ogushi, Y., & Kawakami, K. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 30(20), 3371-3377. doi:10.1016/j.biomaterials.2009.03.030

Wang, L.-S., Du, C., Toh, W. S., Wan, A. C. A., Gao, S. J., & Kurisawa, M. (2014). Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials, 35(7), 2207-2217. doi:10.1016/j.biomaterials.2013.11.070

Wang, L.-S., Du, C., Chung, J. E., & Kurisawa, M. (2012). Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia, 8(5), 1826-1837. doi:10.1016/j.actbio.2012.02.002

Lee, F., Chung, J. E., & Kurisawa, M. (2009). An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release, 134(3), 186-193. doi:10.1016/j.jconrel.2008.11.028

Darr, A., & Calabro, A. (2008). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine, 20(1), 33-44. doi:10.1007/s10856-008-3540-0

Toh, W. S., Lim, T. C., Kurisawa, M., & Spector, M. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835-3845. doi:10.1016/j.biomaterials.2012.01.065

SAKAI, S., & KAWAKAMI, K. (2007). Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomaterialia, 3(4), 495-501. doi:10.1016/j.actbio.2006.12.002

Sakai, S., Moriyama, K., Taguchi, K., & Kawakami, K. (2010). Hematin is an Alternative Catalyst to Horseradish Peroxidase for In Situ Hydrogelation of Polymers with Phenolic Hydroxyl Groups In Vivo. Biomacromolecules, 11(8), 2179-2183. doi:10.1021/bm100623k

Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., & Payne, G. F. (2003). Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials, 24(17), 2831-2841. doi:10.1016/s0142-9612(03)00096-6

Wang, L.-S., Boulaire, J., Chan, P. P. Y., Chung, J. E., & Kurisawa, M. (2010). The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials, 31(33), 8608-8616. doi:10.1016/j.biomaterials.2010.07.075

Gu, W. Y., Yao, H., Huang, C. Y., & Cheung, H. S. (2003). New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Journal of Biomechanics, 36(4), 593-598. doi:10.1016/s0021-9290(02)00437-2

Spagnol, C., Rodrigues, F. H. A., Neto, A. G. V. C., Pereira, A. G. B., Fajardo, A. R., Radovanovic, E., … Muniz, E. C. (2012). Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. European Polymer Journal, 48(3), 454-463. doi:10.1016/j.eurpolymj.2011.12.005

Liu, X., Huang, C., Feng, Y., Liang, J., Fan, Y., Gu, Z., & Zhang, X. (2010). Reinforcement of a Porous Collagen Scaffold with Surface-Activated PLA Fibers. Journal of Biomaterials Science, Polymer Edition, 21(6-7), 963-977. doi:10.1163/156856209x461034

Wayne, J. S., McDowell, C. L., Shields, K. J., & Tuan, R. S. (2005). In Vivo Response of Polylactic Acid–Alginate Scaffolds and Bone Marrow-Derived Cells for Cartilage Tissue Engineering. Tissue Engineering, 11(5-6), 953-963. doi:10.1089/ten.2005.11.953

Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., … Ratcliffe, A. (2002). A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739-4751. doi:10.1016/s0142-9612(02)00223-5

Regev, O., Reddy, C. S., Nseir, N., & Zussman, E. (2012). Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility. Macromolecular Materials and Engineering, 298(3), 283-291. doi:10.1002/mame.201200012

Moutos, F. T., Freed, L. E., & Guilak, F. (2007). A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials, 6(2), 162-167. doi:10.1038/nmat1822

Maranchi, J. P., Trexler, M. M., Guo, Q., & Elisseeff, J. H. (2014). Fibre-reinforced hydrogels with high optical transparency. International Materials Reviews, 59(5), 264-296. doi:10.1179/1743280414y.0000000032

Sutti, A., Lin, T., & Wang, X. (2011). Shear-Enhanced Solution Precipitation: A Simple Process to Produce Short Polymeric Nanofibers. Journal of Nanoscience and Nanotechnology, 11(10), 8947-8952. doi:10.1166/jnn.2011.3489

De Moraes, M. A., Paternotte, E., Mantovani, D., & Beppu, M. M. (2012). Mechanical and Biological Performances of New Scaffolds Made of Collagen Hydrogels and Fibroin Microfibers for Vascular Tissue Engineering. Macromolecular Bioscience, 12(9), 1253-1264. doi:10.1002/mabi.201200060

Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804-1811. doi:10.1016/j.carbpol.2010.10.040

Greenfeld, I., & Zussman, E. (2013). Polymer entanglement loss in extensional flow: Evidence from electrospun short nanofibers. Journal of Polymer Science Part B: Polymer Physics, 51(18), 1377-1391. doi:10.1002/polb.23345

Coburn, J. M., Gibson, M., Monagle, S., Patterson, Z., & Elisseeff, J. H. (2012). Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proceedings of the National Academy of Sciences, 109(25), 10012-10017. doi:10.1073/pnas.1121605109

Santana, B. P., dos Reis Paganotto, G. F., Nedel, F., Piva, E., de Carvalho, R. V., Nör, J. E., … Villarreal Carreño, N. L. (2012). Nano-/microfiber scaffold for tissue engineering: Physical and biological properties. Journal of Biomedical Materials Research Part A, 100A(11), 3051-3058. doi:10.1002/jbm.a.34242

Hsieh, A., Zahir, T., Lapitsky, Y., Amsden, B., Wan, W., & Shoichet, M. S. (2010). Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter, 6(10), 2227. doi:10.1039/b924349f

Yan, X., & Sun, W. (2010). Synthesis and metal ion adsorption studies of chelating resins derived from macroporous glycidyl methacrylate-divinylbenzene copolymer beads anchored schiff bases. Journal of Applied Polymer Science, 117(2), 953-959. doi:10.1002/app.31482

Kai, D., Prabhakaran, M. P., Stahl, B., Eblenkamp, M., Wintermantel, E., & Ramakrishna, S. (2012). Mechanical properties andin vitrobehavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology, 23(9), 095705. doi:10.1088/0957-4484/23/9/095705

Montaño-Leyva, B., Ghizzi D. da Silva, G., Gastaldi, E., Torres-Chávez, P., Gontard, N., & Angellier-Coussy, H. (2013). Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships. Industrial Crops and Products, 43, 545-555. doi:10.1016/j.indcrop.2012.07.065

Coburn, J., Gibson, M., Bandalini, P. A., Laird, C., Mao, H.-Q., Moroni, L., … Elisseeff, J. (2011). Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 7(3), 213-222. doi:10.12989/sss.2011.7.3.213

Tonsomboon, K., & Oyen, M. L. (2013). Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. Journal of the Mechanical Behavior of Biomedical Materials, 21, 185-194. doi:10.1016/j.jmbbm.2013.03.001

Tucker III, C. L., & Liang, E. (1999). Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Composites Science and Technology, 59(5), 655-671. doi:10.1016/s0266-3538(98)00120-1

Yuan, T., Li, K., Guo, L., Fan, H., & Zhang, X. (2011). Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. Journal of Biomedical Materials Research Part A, 98A(3), 332-341. doi:10.1002/jbm.a.33121

Oh, S.-A., Lee, H.-Y., Lee, J. H., Kim, T.-H., Jang, J.-H., Kim, H.-W., & Wall, I. (2012). Collagen Three-Dimensional Hydrogel Matrix Carrying Basic Fibroblast Growth Factor for the Cultivation of Mesenchymal Stem Cells and Osteogenic Differentiation. Tissue Engineering Part A, 18(9-10), 1087-1100. doi:10.1089/ten.tea.2011.0360

Zhang, L., Yuan, T., Guo, L., & Zhang, X. (2012). Anin vitrostudy of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 100A(10), 2717-2725. doi:10.1002/jbm.a.34194

Brigham, M. D., Bick, A., Lo, E., Bendali, A., Burdick, J. A., & Khademhosseini, A. (2009). Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks. Tissue Engineering Part A, 15(7), 1645-1653. doi:10.1089/ten.tea.2008.0441

Mehra, T. D., Ghosh, K., Shu, X. Z., Prestwich, G. D., & Clark, R. A. F. (2006). Molecular Stenting with a Crosslinked Hyaluronan Derivative Inhibits Collagen Gel Contraction. Journal of Investigative Dermatology, 126(10), 2202-2209. doi:10.1038/sj.jid.5700380

Yamato, M., Adachi, E., Yamamoto, K., & Hayashi, T. (1995). Condensation of Collagen Fibrils to the Direct Vicinity of Fibroblasts as a Cause of Gel Contraction1. The Journal of Biochemistry, 117(5), 940-946. doi:10.1093/oxfordjournals.jbchem.a124824

Fu, Y., Xu, K., Zheng, X., Giacomin, A. J., Mix, A. W., & Kao, W. J. (2012). 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 33(1), 48-58. doi:10.1016/j.biomaterials.2011.09.031

Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. Journal of Cell Science, 125(13), 3015-3024. doi:10.1242/jcs.079509

Steward, A., Wagner, D., & Kelly, D. (2013). The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. European Cells and Materials, 25, 167-178. doi:10.22203/ecm.v025a12

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem