Da Silva, M. A., Bode, F., Drake, A. F., Goldoni, S., Stevens, M. M., & Dreiss, C. A. (2014). Enzymatically Cross-Linked Gelatin/Chitosan Hydrogels: Tuning Gel Properties and Cellular Response. Macromolecular Bioscience, 14(6), 817-830. doi:10.1002/mabi.201300472
Jayakrishnan, A., & Jameela, S. R. (1996). Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials, 17(5), 471-484. doi:10.1016/0142-9612(96)82721-9
Lai, J.-Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911. doi:10.1007/s10856-010-4035-3
[+]
Da Silva, M. A., Bode, F., Drake, A. F., Goldoni, S., Stevens, M. M., & Dreiss, C. A. (2014). Enzymatically Cross-Linked Gelatin/Chitosan Hydrogels: Tuning Gel Properties and Cellular Response. Macromolecular Bioscience, 14(6), 817-830. doi:10.1002/mabi.201300472
Jayakrishnan, A., & Jameela, S. R. (1996). Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials, 17(5), 471-484. doi:10.1016/0142-9612(96)82721-9
Lai, J.-Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911. doi:10.1007/s10856-010-4035-3
Yang, S.-H., Chen, P.-Q., Chen, Y.-F., & Lin, F.-H. (2005). An In-vitro Study on Regeneration of Human Nucleus Pulposus by Using Gelatin/Chondroitin-6-Sulfate/Hyaluronan Tri-copolymer Scaffold. Artificial Organs, 29(10), 806-814. doi:10.1111/j.1525-1594.2005.00133.x
Hoch, E., Schuh, C., Hirth, T., Tovar, G. E. M., & Borchers, K. (2012). Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. Journal of Materials Science: Materials in Medicine, 23(11), 2607-2617. doi:10.1007/s10856-012-4731-2
Van Den Bulcke, A. I., Bogdanov, B., De Rooze, N., Schacht, E. H., Cornelissen, M., & Berghmans, H. (2000). Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules, 1(1), 31-38. doi:10.1021/bm990017d
Falabella, C. A., & Chen, W. (2009). Cross-Linked Hyaluronic Acid Films to Reduce Intra-Abdominal Postsurgical Adhesions in an Experimental Model. Digestive Surgery, 26(6), 476-481. doi:10.1159/000253872
Cheng, Y., Lu, J., Liu, S., Zhao, P., Lu, G., & Chen, J. (2014). The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydrate Polymers, 107, 57-64. doi:10.1016/j.carbpol.2014.02.034
Bao, T.-Q., Franco, R. A., & Lee, B.-T. (2012). Preparation and characterization of a novel 3D scaffold from poly(ɛ-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochemical Engineering Journal, 64, 76-83. doi:10.1016/j.bej.2012.02.005
Lin, L.-C., Chang, S. J., Lin, C. Y., Lin, Y. T., Chuang, C. W., Yao, C.-H., & Kuo, S. M. (2011). Repair of Chondral Defects With Allogenous Chondrocyte-Seeded Hyaluronan/Collagen II Microspheres in a Rabbit Model. Artificial Organs, 36(4), E102-E109. doi:10.1111/j.1525-1594.2011.01370.x
Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(S4), 467-479. doi:10.1007/s00586-008-0745-3
Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41(6), 2193-2221. doi:10.1039/c1cs15203c
Wang, L.-S., Chung, J. E., Pui-Yik Chan, P., & Kurisawa, M. (2010). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31(6), 1148-1157. doi:10.1016/j.biomaterials.2009.10.042
JIN, R., HIEMSTRA, C., ZHONG, Z., & FEIJEN, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. doi:10.1016/j.biomaterials.2007.02.032
Davis, N. E., Ding, S., Forster, R. E., Pinkas, D. M., & Barron, A. E. (2010). Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation. Biomaterials, 31(28), 7288-7297. doi:10.1016/j.biomaterials.2010.06.003
Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33(5), 1281-1290. doi:10.1016/j.biomaterials.2011.10.067
Yung, C. W., Wu, L. Q., Tullman, J. A., Payne, G. F., Bentley, W. E., & Barbari, T. A. (2007). Transglutaminase crosslinked gelatin as a tissue engineering scaffold. Journal of Biomedical Materials Research Part A, 83A(4), 1039-1046. doi:10.1002/jbm.a.31431
Sakai, S., Hirose, K., Taguchi, K., Ogushi, Y., & Kawakami, K. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 30(20), 3371-3377. doi:10.1016/j.biomaterials.2009.03.030
Wang, L.-S., Du, C., Toh, W. S., Wan, A. C. A., Gao, S. J., & Kurisawa, M. (2014). Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials, 35(7), 2207-2217. doi:10.1016/j.biomaterials.2013.11.070
Wang, L.-S., Du, C., Chung, J. E., & Kurisawa, M. (2012). Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia, 8(5), 1826-1837. doi:10.1016/j.actbio.2012.02.002
Lee, F., Chung, J. E., & Kurisawa, M. (2009). An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release, 134(3), 186-193. doi:10.1016/j.jconrel.2008.11.028
Darr, A., & Calabro, A. (2008). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine, 20(1), 33-44. doi:10.1007/s10856-008-3540-0
Toh, W. S., Lim, T. C., Kurisawa, M., & Spector, M. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835-3845. doi:10.1016/j.biomaterials.2012.01.065
SAKAI, S., & KAWAKAMI, K. (2007). Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomaterialia, 3(4), 495-501. doi:10.1016/j.actbio.2006.12.002
Sakai, S., Moriyama, K., Taguchi, K., & Kawakami, K. (2010). Hematin is an Alternative Catalyst to Horseradish Peroxidase for In Situ Hydrogelation of Polymers with Phenolic Hydroxyl Groups In Vivo. Biomacromolecules, 11(8), 2179-2183. doi:10.1021/bm100623k
Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., & Payne, G. F. (2003). Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials, 24(17), 2831-2841. doi:10.1016/s0142-9612(03)00096-6
Wang, L.-S., Boulaire, J., Chan, P. P. Y., Chung, J. E., & Kurisawa, M. (2010). The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials, 31(33), 8608-8616. doi:10.1016/j.biomaterials.2010.07.075
Gu, W. Y., Yao, H., Huang, C. Y., & Cheung, H. S. (2003). New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Journal of Biomechanics, 36(4), 593-598. doi:10.1016/s0021-9290(02)00437-2
Spagnol, C., Rodrigues, F. H. A., Neto, A. G. V. C., Pereira, A. G. B., Fajardo, A. R., Radovanovic, E., … Muniz, E. C. (2012). Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. European Polymer Journal, 48(3), 454-463. doi:10.1016/j.eurpolymj.2011.12.005
Liu, X., Huang, C., Feng, Y., Liang, J., Fan, Y., Gu, Z., & Zhang, X. (2010). Reinforcement of a Porous Collagen Scaffold with Surface-Activated PLA Fibers. Journal of Biomaterials Science, Polymer Edition, 21(6-7), 963-977. doi:10.1163/156856209x461034
Wayne, J. S., McDowell, C. L., Shields, K. J., & Tuan, R. S. (2005). In Vivo Response of Polylactic Acid–Alginate Scaffolds and Bone Marrow-Derived Cells for Cartilage Tissue Engineering. Tissue Engineering, 11(5-6), 953-963. doi:10.1089/ten.2005.11.953
Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., … Ratcliffe, A. (2002). A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739-4751. doi:10.1016/s0142-9612(02)00223-5
Regev, O., Reddy, C. S., Nseir, N., & Zussman, E. (2012). Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility. Macromolecular Materials and Engineering, 298(3), 283-291. doi:10.1002/mame.201200012
Moutos, F. T., Freed, L. E., & Guilak, F. (2007). A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials, 6(2), 162-167. doi:10.1038/nmat1822
Maranchi, J. P., Trexler, M. M., Guo, Q., & Elisseeff, J. H. (2014). Fibre-reinforced hydrogels with high optical transparency. International Materials Reviews, 59(5), 264-296. doi:10.1179/1743280414y.0000000032
Sutti, A., Lin, T., & Wang, X. (2011). Shear-Enhanced Solution Precipitation: A Simple Process to Produce Short Polymeric Nanofibers. Journal of Nanoscience and Nanotechnology, 11(10), 8947-8952. doi:10.1166/jnn.2011.3489
De Moraes, M. A., Paternotte, E., Mantovani, D., & Beppu, M. M. (2012). Mechanical and Biological Performances of New Scaffolds Made of Collagen Hydrogels and Fibroin Microfibers for Vascular Tissue Engineering. Macromolecular Bioscience, 12(9), 1253-1264. doi:10.1002/mabi.201200060
Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804-1811. doi:10.1016/j.carbpol.2010.10.040
Greenfeld, I., & Zussman, E. (2013). Polymer entanglement loss in extensional flow: Evidence from electrospun short nanofibers. Journal of Polymer Science Part B: Polymer Physics, 51(18), 1377-1391. doi:10.1002/polb.23345
Coburn, J. M., Gibson, M., Monagle, S., Patterson, Z., & Elisseeff, J. H. (2012). Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proceedings of the National Academy of Sciences, 109(25), 10012-10017. doi:10.1073/pnas.1121605109
Santana, B. P., dos Reis Paganotto, G. F., Nedel, F., Piva, E., de Carvalho, R. V., Nör, J. E., … Villarreal Carreño, N. L. (2012). Nano-/microfiber scaffold for tissue engineering: Physical and biological properties. Journal of Biomedical Materials Research Part A, 100A(11), 3051-3058. doi:10.1002/jbm.a.34242
Hsieh, A., Zahir, T., Lapitsky, Y., Amsden, B., Wan, W., & Shoichet, M. S. (2010). Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter, 6(10), 2227. doi:10.1039/b924349f
Yan, X., & Sun, W. (2010). Synthesis and metal ion adsorption studies of chelating resins derived from macroporous glycidyl methacrylate-divinylbenzene copolymer beads anchored schiff bases. Journal of Applied Polymer Science, 117(2), 953-959. doi:10.1002/app.31482
Kai, D., Prabhakaran, M. P., Stahl, B., Eblenkamp, M., Wintermantel, E., & Ramakrishna, S. (2012). Mechanical properties andin vitrobehavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology, 23(9), 095705. doi:10.1088/0957-4484/23/9/095705
Montaño-Leyva, B., Ghizzi D. da Silva, G., Gastaldi, E., Torres-Chávez, P., Gontard, N., & Angellier-Coussy, H. (2013). Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships. Industrial Crops and Products, 43, 545-555. doi:10.1016/j.indcrop.2012.07.065
Coburn, J., Gibson, M., Bandalini, P. A., Laird, C., Mao, H.-Q., Moroni, L., … Elisseeff, J. (2011). Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 7(3), 213-222. doi:10.12989/sss.2011.7.3.213
Tonsomboon, K., & Oyen, M. L. (2013). Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. Journal of the Mechanical Behavior of Biomedical Materials, 21, 185-194. doi:10.1016/j.jmbbm.2013.03.001
Tucker III, C. L., & Liang, E. (1999). Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Composites Science and Technology, 59(5), 655-671. doi:10.1016/s0266-3538(98)00120-1
Yuan, T., Li, K., Guo, L., Fan, H., & Zhang, X. (2011). Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. Journal of Biomedical Materials Research Part A, 98A(3), 332-341. doi:10.1002/jbm.a.33121
Oh, S.-A., Lee, H.-Y., Lee, J. H., Kim, T.-H., Jang, J.-H., Kim, H.-W., & Wall, I. (2012). Collagen Three-Dimensional Hydrogel Matrix Carrying Basic Fibroblast Growth Factor for the Cultivation of Mesenchymal Stem Cells and Osteogenic Differentiation. Tissue Engineering Part A, 18(9-10), 1087-1100. doi:10.1089/ten.tea.2011.0360
Zhang, L., Yuan, T., Guo, L., & Zhang, X. (2012). Anin vitrostudy of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 100A(10), 2717-2725. doi:10.1002/jbm.a.34194
Brigham, M. D., Bick, A., Lo, E., Bendali, A., Burdick, J. A., & Khademhosseini, A. (2009). Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks. Tissue Engineering Part A, 15(7), 1645-1653. doi:10.1089/ten.tea.2008.0441
Mehra, T. D., Ghosh, K., Shu, X. Z., Prestwich, G. D., & Clark, R. A. F. (2006). Molecular Stenting with a Crosslinked Hyaluronan Derivative Inhibits Collagen Gel Contraction. Journal of Investigative Dermatology, 126(10), 2202-2209. doi:10.1038/sj.jid.5700380
Yamato, M., Adachi, E., Yamamoto, K., & Hayashi, T. (1995). Condensation of Collagen Fibrils to the Direct Vicinity of Fibroblasts as a Cause of Gel Contraction1. The Journal of Biochemistry, 117(5), 940-946. doi:10.1093/oxfordjournals.jbchem.a124824
Fu, Y., Xu, K., Zheng, X., Giacomin, A. J., Mix, A. W., & Kao, W. J. (2012). 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 33(1), 48-58. doi:10.1016/j.biomaterials.2011.09.031
Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. Journal of Cell Science, 125(13), 3015-3024. doi:10.1242/jcs.079509
Steward, A., Wagner, D., & Kelly, D. (2013). The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. European Cells and Materials, 25, 167-178. doi:10.22203/ecm.v025a12
[-]