- -

Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production

Show simple item record

Files in this item

dc.contributor.author POVEDA-REYES, SARA es_ES
dc.contributor.author Mellera-Oglialoro, Leonardo Rubén es_ES
dc.contributor.author Martínez-Haya, Rebeca es_ES
dc.contributor.author Gamboa Martínez, Tatiana Carolina es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Ferrer, G.G. es_ES
dc.date.accessioned 2018-03-04T05:16:38Z
dc.date.available 2018-03-04T05:16:38Z
dc.date.issued 2015 es_ES
dc.identifier.issn 1438-7492 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98770
dc.description.abstract [EN] Short poly-l-lactic acid (PLLA) microfibers have been produced in order to disperse them into the gelatin solution and enable injection in the tissue defect prior to gel formation. Two methods for fabrication of loose fibers with submicrometric dimensions are presented in this paper. One is based on manufacturing electrospun meshes and subsequent milling (PLLA-ES) and the other involves projection of a PLLA solution into a high turbulent non-solvent medium (PLLA-HT). Composites produced with PLLA-ES show a compression Young's modulus from 2.65kPa for the pure gelatin to 6.69kPa for the composite with 1.5% PLLA-ES fibers. The new injectable gelatin-fiber composites are not cytotoxic. es_ES
dc.description.sponsorship The authors are grateful for the financial support received from the Spanish Ministry through the MAT2013-46467-C4-1-R project and the BES-2011-046144 grant. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the "Instituto de Salud Carlos III'' with assistance from the European Regional Development Fund. The authors thank "Servicio de Microscopia Electronica'' of Universitat Politecnica de Valencia for their valuable help. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Macromolecular Materials and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Enzymatic cross-linking es_ES
dc.subject Injectable hydrogels es_ES
dc.subject Microfiber-hydrogel composites es_ES
dc.subject Short microfibers es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mame.201500033 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-046144/ES/BES-2011-046144/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Poveda-Reyes, S.; Mellera-Oglialoro, LR.; Martínez-Haya, R.; Gamboa Martínez, TC.; Gómez Ribelles, JL.; Ferrer, G. (2015). Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production. Macromolecular Materials and Engineering. 300(10):977-988. https://doi.org/10.1002/mame.201500033 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mame.201500033 es_ES
dc.description.upvformatpinicio 977 es_ES
dc.description.upvformatpfin 988 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 300 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\293310 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Da Silva, M. A., Bode, F., Drake, A. F., Goldoni, S., Stevens, M. M., & Dreiss, C. A. (2014). Enzymatically Cross-Linked Gelatin/Chitosan Hydrogels: Tuning Gel Properties and Cellular Response. Macromolecular Bioscience, 14(6), 817-830. doi:10.1002/mabi.201300472 es_ES
dc.description.references Jayakrishnan, A., & Jameela, S. R. (1996). Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials, 17(5), 471-484. doi:10.1016/0142-9612(96)82721-9 es_ES
dc.description.references Lai, J.-Y. (2010). Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. Journal of Materials Science: Materials in Medicine, 21(6), 1899-1911. doi:10.1007/s10856-010-4035-3 es_ES
dc.description.references Yang, S.-H., Chen, P.-Q., Chen, Y.-F., & Lin, F.-H. (2005). An In-vitro Study on Regeneration of Human Nucleus Pulposus by Using Gelatin/Chondroitin-6-Sulfate/Hyaluronan Tri-copolymer Scaffold. Artificial Organs, 29(10), 806-814. doi:10.1111/j.1525-1594.2005.00133.x es_ES
dc.description.references Hoch, E., Schuh, C., Hirth, T., Tovar, G. E. M., & Borchers, K. (2012). Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. Journal of Materials Science: Materials in Medicine, 23(11), 2607-2617. doi:10.1007/s10856-012-4731-2 es_ES
dc.description.references Van Den Bulcke, A. I., Bogdanov, B., De Rooze, N., Schacht, E. H., Cornelissen, M., & Berghmans, H. (2000). Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels. Biomacromolecules, 1(1), 31-38. doi:10.1021/bm990017d es_ES
dc.description.references Falabella, C. A., & Chen, W. (2009). Cross-Linked Hyaluronic Acid Films to Reduce Intra-Abdominal Postsurgical Adhesions in an Experimental Model. Digestive Surgery, 26(6), 476-481. doi:10.1159/000253872 es_ES
dc.description.references Cheng, Y., Lu, J., Liu, S., Zhao, P., Lu, G., & Chen, J. (2014). The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydrate Polymers, 107, 57-64. doi:10.1016/j.carbpol.2014.02.034 es_ES
dc.description.references Bao, T.-Q., Franco, R. A., & Lee, B.-T. (2012). Preparation and characterization of a novel 3D scaffold from poly(ɛ-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochemical Engineering Journal, 64, 76-83. doi:10.1016/j.bej.2012.02.005 es_ES
dc.description.references Lin, L.-C., Chang, S. J., Lin, C. Y., Lin, Y. T., Chuang, C. W., Yao, C.-H., & Kuo, S. M. (2011). Repair of Chondral Defects With Allogenous Chondrocyte-Seeded Hyaluronan/Collagen II Microspheres in a Rabbit Model. Artificial Organs, 36(4), E102-E109. doi:10.1111/j.1525-1594.2011.01370.x es_ES
dc.description.references Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal, 17(S4), 467-479. doi:10.1007/s00586-008-0745-3 es_ES
dc.description.references Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41(6), 2193-2221. doi:10.1039/c1cs15203c es_ES
dc.description.references Wang, L.-S., Chung, J. E., Pui-Yik Chan, P., & Kurisawa, M. (2010). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31(6), 1148-1157. doi:10.1016/j.biomaterials.2009.10.042 es_ES
dc.description.references JIN, R., HIEMSTRA, C., ZHONG, Z., & FEIJEN, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. doi:10.1016/j.biomaterials.2007.02.032 es_ES
dc.description.references Davis, N. E., Ding, S., Forster, R. E., Pinkas, D. M., & Barron, A. E. (2010). Modular enzymatically crosslinked protein polymer hydrogels for in situ gelation. Biomaterials, 31(28), 7288-7297. doi:10.1016/j.biomaterials.2010.06.003 es_ES
dc.description.references Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33(5), 1281-1290. doi:10.1016/j.biomaterials.2011.10.067 es_ES
dc.description.references Yung, C. W., Wu, L. Q., Tullman, J. A., Payne, G. F., Bentley, W. E., & Barbari, T. A. (2007). Transglutaminase crosslinked gelatin as a tissue engineering scaffold. Journal of Biomedical Materials Research Part A, 83A(4), 1039-1046. doi:10.1002/jbm.a.31431 es_ES
dc.description.references Sakai, S., Hirose, K., Taguchi, K., Ogushi, Y., & Kawakami, K. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 30(20), 3371-3377. doi:10.1016/j.biomaterials.2009.03.030 es_ES
dc.description.references Wang, L.-S., Du, C., Toh, W. S., Wan, A. C. A., Gao, S. J., & Kurisawa, M. (2014). Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials, 35(7), 2207-2217. doi:10.1016/j.biomaterials.2013.11.070 es_ES
dc.description.references Wang, L.-S., Du, C., Chung, J. E., & Kurisawa, M. (2012). Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells. Acta Biomaterialia, 8(5), 1826-1837. doi:10.1016/j.actbio.2012.02.002 es_ES
dc.description.references Lee, F., Chung, J. E., & Kurisawa, M. (2009). An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. Journal of Controlled Release, 134(3), 186-193. doi:10.1016/j.jconrel.2008.11.028 es_ES
dc.description.references Darr, A., & Calabro, A. (2008). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine, 20(1), 33-44. doi:10.1007/s10856-008-3540-0 es_ES
dc.description.references Toh, W. S., Lim, T. C., Kurisawa, M., & Spector, M. (2012). Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33(15), 3835-3845. doi:10.1016/j.biomaterials.2012.01.065 es_ES
dc.description.references SAKAI, S., & KAWAKAMI, K. (2007). Synthesis and characterization of both ionically and enzymatically cross-linkable alginate. Acta Biomaterialia, 3(4), 495-501. doi:10.1016/j.actbio.2006.12.002 es_ES
dc.description.references Sakai, S., Moriyama, K., Taguchi, K., & Kawakami, K. (2010). Hematin is an Alternative Catalyst to Horseradish Peroxidase for In Situ Hydrogelation of Polymers with Phenolic Hydroxyl Groups In Vivo. Biomacromolecules, 11(8), 2179-2183. doi:10.1021/bm100623k es_ES
dc.description.references Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., & Payne, G. F. (2003). Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials, 24(17), 2831-2841. doi:10.1016/s0142-9612(03)00096-6 es_ES
dc.description.references Wang, L.-S., Boulaire, J., Chan, P. P. Y., Chung, J. E., & Kurisawa, M. (2010). The role of stiffness of gelatin–hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials, 31(33), 8608-8616. doi:10.1016/j.biomaterials.2010.07.075 es_ES
dc.description.references Gu, W. Y., Yao, H., Huang, C. Y., & Cheung, H. S. (2003). New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. Journal of Biomechanics, 36(4), 593-598. doi:10.1016/s0021-9290(02)00437-2 es_ES
dc.description.references Spagnol, C., Rodrigues, F. H. A., Neto, A. G. V. C., Pereira, A. G. B., Fajardo, A. R., Radovanovic, E., … Muniz, E. C. (2012). Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. European Polymer Journal, 48(3), 454-463. doi:10.1016/j.eurpolymj.2011.12.005 es_ES
dc.description.references Liu, X., Huang, C., Feng, Y., Liang, J., Fan, Y., Gu, Z., & Zhang, X. (2010). Reinforcement of a Porous Collagen Scaffold with Surface-Activated PLA Fibers. Journal of Biomaterials Science, Polymer Edition, 21(6-7), 963-977. doi:10.1163/156856209x461034 es_ES
dc.description.references Wayne, J. S., McDowell, C. L., Shields, K. J., & Tuan, R. S. (2005). In Vivo Response of Polylactic Acid–Alginate Scaffolds and Bone Marrow-Derived Cells for Cartilage Tissue Engineering. Tissue Engineering, 11(5-6), 953-963. doi:10.1089/ten.2005.11.953 es_ES
dc.description.references Sherwood, J. K., Riley, S. L., Palazzolo, R., Brown, S. C., Monkhouse, D. C., Coates, M., … Ratcliffe, A. (2002). A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials, 23(24), 4739-4751. doi:10.1016/s0142-9612(02)00223-5 es_ES
dc.description.references Regev, O., Reddy, C. S., Nseir, N., & Zussman, E. (2012). Hydrogel Reinforced by Short Albumin Fibers: Mechanical Characterization and Assessment of Biocompatibility. Macromolecular Materials and Engineering, 298(3), 283-291. doi:10.1002/mame.201200012 es_ES
dc.description.references Moutos, F. T., Freed, L. E., & Guilak, F. (2007). A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials, 6(2), 162-167. doi:10.1038/nmat1822 es_ES
dc.description.references Maranchi, J. P., Trexler, M. M., Guo, Q., & Elisseeff, J. H. (2014). Fibre-reinforced hydrogels with high optical transparency. International Materials Reviews, 59(5), 264-296. doi:10.1179/1743280414y.0000000032 es_ES
dc.description.references Sutti, A., Lin, T., & Wang, X. (2011). Shear-Enhanced Solution Precipitation: A Simple Process to Produce Short Polymeric Nanofibers. Journal of Nanoscience and Nanotechnology, 11(10), 8947-8952. doi:10.1166/jnn.2011.3489 es_ES
dc.description.references De Moraes, M. A., Paternotte, E., Mantovani, D., & Beppu, M. M. (2012). Mechanical and Biological Performances of New Scaffolds Made of Collagen Hydrogels and Fibroin Microfibers for Vascular Tissue Engineering. Macromolecular Bioscience, 12(9), 1253-1264. doi:10.1002/mabi.201200060 es_ES
dc.description.references Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804-1811. doi:10.1016/j.carbpol.2010.10.040 es_ES
dc.description.references Greenfeld, I., & Zussman, E. (2013). Polymer entanglement loss in extensional flow: Evidence from electrospun short nanofibers. Journal of Polymer Science Part B: Polymer Physics, 51(18), 1377-1391. doi:10.1002/polb.23345 es_ES
dc.description.references Coburn, J. M., Gibson, M., Monagle, S., Patterson, Z., & Elisseeff, J. H. (2012). Bioinspired nanofibers support chondrogenesis for articular cartilage repair. Proceedings of the National Academy of Sciences, 109(25), 10012-10017. doi:10.1073/pnas.1121605109 es_ES
dc.description.references Santana, B. P., dos Reis Paganotto, G. F., Nedel, F., Piva, E., de Carvalho, R. V., Nör, J. E., … Villarreal Carreño, N. L. (2012). Nano-/microfiber scaffold for tissue engineering: Physical and biological properties. Journal of Biomedical Materials Research Part A, 100A(11), 3051-3058. doi:10.1002/jbm.a.34242 es_ES
dc.description.references Hsieh, A., Zahir, T., Lapitsky, Y., Amsden, B., Wan, W., & Shoichet, M. S. (2010). Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter, 6(10), 2227. doi:10.1039/b924349f es_ES
dc.description.references Yan, X., & Sun, W. (2010). Synthesis and metal ion adsorption studies of chelating resins derived from macroporous glycidyl methacrylate-divinylbenzene copolymer beads anchored schiff bases. Journal of Applied Polymer Science, 117(2), 953-959. doi:10.1002/app.31482 es_ES
dc.description.references Kai, D., Prabhakaran, M. P., Stahl, B., Eblenkamp, M., Wintermantel, E., & Ramakrishna, S. (2012). Mechanical properties andin vitrobehavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology, 23(9), 095705. doi:10.1088/0957-4484/23/9/095705 es_ES
dc.description.references Montaño-Leyva, B., Ghizzi D. da Silva, G., Gastaldi, E., Torres-Chávez, P., Gontard, N., & Angellier-Coussy, H. (2013). Biocomposites from wheat proteins and fibers: Structure/mechanical properties relationships. Industrial Crops and Products, 43, 545-555. doi:10.1016/j.indcrop.2012.07.065 es_ES
dc.description.references Coburn, J., Gibson, M., Bandalini, P. A., Laird, C., Mao, H.-Q., Moroni, L., … Elisseeff, J. (2011). Biomimetics of the extracellular matrix: an integrated three-dimensional fiber-hydrogel composite for cartilage tissue engineering. Smart Structures and Systems, 7(3), 213-222. doi:10.12989/sss.2011.7.3.213 es_ES
dc.description.references Tonsomboon, K., & Oyen, M. L. (2013). Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. Journal of the Mechanical Behavior of Biomedical Materials, 21, 185-194. doi:10.1016/j.jmbbm.2013.03.001 es_ES
dc.description.references Tucker III, C. L., & Liang, E. (1999). Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Composites Science and Technology, 59(5), 655-671. doi:10.1016/s0266-3538(98)00120-1 es_ES
dc.description.references Yuan, T., Li, K., Guo, L., Fan, H., & Zhang, X. (2011). Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. Journal of Biomedical Materials Research Part A, 98A(3), 332-341. doi:10.1002/jbm.a.33121 es_ES
dc.description.references Oh, S.-A., Lee, H.-Y., Lee, J. H., Kim, T.-H., Jang, J.-H., Kim, H.-W., & Wall, I. (2012). Collagen Three-Dimensional Hydrogel Matrix Carrying Basic Fibroblast Growth Factor for the Cultivation of Mesenchymal Stem Cells and Osteogenic Differentiation. Tissue Engineering Part A, 18(9-10), 1087-1100. doi:10.1089/ten.tea.2011.0360 es_ES
dc.description.references Zhang, L., Yuan, T., Guo, L., & Zhang, X. (2012). Anin vitrostudy of collagen hydrogel to induce the chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 100A(10), 2717-2725. doi:10.1002/jbm.a.34194 es_ES
dc.description.references Brigham, M. D., Bick, A., Lo, E., Bendali, A., Burdick, J. A., & Khademhosseini, A. (2009). Mechanically Robust and Bioadhesive Collagen and Photocrosslinkable Hyaluronic Acid Semi-Interpenetrating Networks. Tissue Engineering Part A, 15(7), 1645-1653. doi:10.1089/ten.tea.2008.0441 es_ES
dc.description.references Mehra, T. D., Ghosh, K., Shu, X. Z., Prestwich, G. D., & Clark, R. A. F. (2006). Molecular Stenting with a Crosslinked Hyaluronan Derivative Inhibits Collagen Gel Contraction. Journal of Investigative Dermatology, 126(10), 2202-2209. doi:10.1038/sj.jid.5700380 es_ES
dc.description.references Yamato, M., Adachi, E., Yamamoto, K., & Hayashi, T. (1995). Condensation of Collagen Fibrils to the Direct Vicinity of Fibroblasts as a Cause of Gel Contraction1. The Journal of Biochemistry, 117(5), 940-946. doi:10.1093/oxfordjournals.jbchem.a124824 es_ES
dc.description.references Fu, Y., Xu, K., Zheng, X., Giacomin, A. J., Mix, A. W., & Kao, W. J. (2012). 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels. Biomaterials, 33(1), 48-58. doi:10.1016/j.biomaterials.2011.09.031 es_ES
dc.description.references Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. Journal of Cell Science, 125(13), 3015-3024. doi:10.1242/jcs.079509 es_ES
dc.description.references Steward, A., Wagner, D., & Kelly, D. (2013). The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure. European Cells and Materials, 25, 167-178. doi:10.22203/ecm.v025a12 es_ES


This item appears in the following Collection(s)

Show simple item record