- -

Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids

Show full item record

Pallas, I.; Marcos Martínez, MD.; Martínez-Máñez, R.; Ros-Lis, JV. (2017). Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids. Sensors. 17(9):1-12. https://doi.org/10.3390/s17092134

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/98782

Files in this item

Item Metadata

Title: Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids
Author: Pallas, I Marcos Martínez, María Dolores Martínez-Máñez, Ramón Ros-Lis, José Vicente
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Chemical burns, mainly produced by acids, are a topic of concern. A new sensing material for the detection of strong acids able to be incorporated into textiles has been developed. The material is prepared by the ...[+]
Subjects: Sensor , Indicator , Mesoporous material , Colour , Strong acid , Textile
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s17092134
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s17092134
Project ID:
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
Thanks:
The authors thank the financial support from the Spanish Government (project MAT2015-64139-C4-1-R) and the Generalitat Valenciana (project PROMETEOII/2014/047).
Type: Artículo

References

MCCOY, M. (2008). MADE IN WISCONSIN. Chemical & Engineering News, 86(19), 27. doi:10.1021/cen-v086n019.p027

Koh, D.-H., Lee, S.-G., & Kim, H.-C. (2017). Incidence and characteristics of chemical burns. Burns, 43(3), 654-664. doi:10.1016/j.burns.2016.08.037

Ye, C., Wang, X., Zhang, Y., Ni, L., Jiang, R., Liu, L., & Han, C. (2016). Ten-year epidemiology of chemical burns in western Zhejiang Province, China. Burns, 42(3), 668-674. doi:10.1016/j.burns.2015.12.004 [+]
MCCOY, M. (2008). MADE IN WISCONSIN. Chemical & Engineering News, 86(19), 27. doi:10.1021/cen-v086n019.p027

Koh, D.-H., Lee, S.-G., & Kim, H.-C. (2017). Incidence and characteristics of chemical burns. Burns, 43(3), 654-664. doi:10.1016/j.burns.2016.08.037

Ye, C., Wang, X., Zhang, Y., Ni, L., Jiang, R., Liu, L., & Han, C. (2016). Ten-year epidemiology of chemical burns in western Zhejiang Province, China. Burns, 42(3), 668-674. doi:10.1016/j.burns.2015.12.004

Ghahremani Honarvar, M., & Latifi, M. (2016). Overview of wearable electronics and smart textiles. The Journal of The Textile Institute, 108(4), 631-652. doi:10.1080/00405000.2016.1177870

Stoppa, M., & Chiolerio, A. (2014). Wearable Electronics and Smart Textiles: A Critical Review. Sensors, 14(7), 11957-11992. doi:10.3390/s140711957

Van der Schueren, L., & De Clerck, K. (2012). Coloration and application of pH-sensitive dyes on textile materials. Coloration Technology, 128(2), 82-90. doi:10.1111/j.1478-4408.2011.00361.x

Staneva, D., Betcheva, R., & Chovelon, J.-M. (2007). Optical sensor for aliphatic amines based on the simultaneous colorimetric and fluorescence responses of smart textile. Journal of Applied Polymer Science, 106(3), 1950-1956. doi:10.1002/app.26724

Steyaert, I., Vancoillie, G., Hoogenboom, R., & De Clerck, K. (2015). Dye immobilization in halochromic nanofibers through blend electrospinning of a dye-containing copolymer and polyamide-6. Polymer Chemistry, 6(14), 2685-2694. doi:10.1039/c5py00060b

De Meyer, T., Steyaert, I., Hemelsoet, K., Hoogenboom, R., Van Speybroeck, V., & De Clerck, K. (2016). Halochromic properties of sulfonphthaleine dyes in a textile environment: The influence of substituents. Dyes and Pigments, 124, 249-257. doi:10.1016/j.dyepig.2015.09.007

Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e

Quang, D. T., & Kim, J. S. (2010). Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chemical Reviews, 110(10), 6280-6301. doi:10.1021/cr100154p

Zhang, X., Yin, J., & Yoon, J. (2014). Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors. Chemical Reviews, 114(9), 4918-4959. doi:10.1021/cr400568b

Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., … Lorente, I. (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. The Analyst, 137(16), 3635. doi:10.1039/c2an35211g

Esteban, J., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Moragues, M., Soto, J., & Sancenón, F. (2010). Sensitive and Selective Chromogenic Sensing of Carbon Monoxide by Using Binuclear Rhodium Complexes. Angewandte Chemie International Edition, 49(29), 4934-4937. doi:10.1002/anie.201001344

Scott, B. J., Wirnsberger, G., & Stucky, G. D. (2001). Mesoporous and Mesostructured Materials for Optical Applications. Chemistry of Materials, 13(10), 3140-3150. doi:10.1021/cm0110730

Melde, B., Johnson, B., & Charles, P. (2008). Mesoporous Silicate Materials in Sensing. Sensors, 8(8), 5202-5228. doi:10.3390/s8085202

Wagner, T., Haffer, S., Weinberger, C., Klaus, D., & Tiemann, M. (2013). Mesoporous materials as gas sensors. Chem. Soc. Rev., 42(9), 4036-4053. doi:10.1039/c2cs35379b

Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756

Coll, C., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., & Soto, J. (2010). A new approach for the selective and sensitive colorimetric detection of ionic surfactants in water. J. Mater. Chem., 20(8), 1442-1451. doi:10.1039/b910659f

Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632

Sanfeliu, C., Martínez-Máñez, R., Sancenón, F., Soto, J., Puchol, V., Amorós, P., & Marcos, M. D. (2012). Low-cost materials for boron adsorption from water. Journal of Materials Chemistry, 22(48), 25362. doi:10.1039/c2jm32819d

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Descalzo, A. B., Jimenez, D., Marcos, M. D., Martínez-Máñez, R., Soto, J., El Haskouri, J., … Borrachero, M. V. (2002). A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups. Advanced Materials, 14(13-14), 966-969. doi:10.1002/1521-4095(20020705)14:13/14<966::aid-adma966>3.0.co;2-d

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record