- -

Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pallas, I es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Ros-Lis, José Vicente es_ES
dc.date.accessioned 2018-03-05T05:03:01Z
dc.date.available 2018-03-05T05:03:01Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98782
dc.description.abstract [EN] Chemical burns, mainly produced by acids, are a topic of concern. A new sensing material for the detection of strong acids able to be incorporated into textiles has been developed. The material is prepared by the covalent attachment of 2,2 ',4,4 ',4 ''-pentamethoxy triphenyl methanol to a mesoporous material which further is included in a nitro resin to obtain a colourless composite. The response of this composite to diverse acid solutions was tested showing the appearance of an intense purple colour (with a colour difference higher than 160) that can be monitored by the naked eye or could be easily digitised to feed an instrumental sensor. Reversibility and resistance to washing cycles were studied with positive results. Finally, the response of the sensing composite to acid vapours was assayed, observing a colour change similar to that found in solution. es_ES
dc.description.sponsorship The authors thank the financial support from the Spanish Government (project MAT2015-64139-C4-1-R) and the Generalitat Valenciana (project PROMETEOII/2014/047). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Sensor es_ES
dc.subject Indicator es_ES
dc.subject Mesoporous material es_ES
dc.subject Colour es_ES
dc.subject Strong acid es_ES
dc.subject Textile es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s17092134 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pallas, I.; Marcos Martínez, MD.; Martínez-Máñez, R.; Ros-Lis, JV. (2017). Development of a textile nanocomposite as naked eye indicator of the exposition to strong acids. Sensors. 17(9):1-12. https://doi.org/10.3390/s17092134 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s17092134 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 28926950 en_EN
dc.identifier.pmcid PMC5620949 en_EN
dc.relation.pasarela S\350021 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references MCCOY, M. (2008). MADE IN WISCONSIN. Chemical & Engineering News, 86(19), 27. doi:10.1021/cen-v086n019.p027 es_ES
dc.description.references Koh, D.-H., Lee, S.-G., & Kim, H.-C. (2017). Incidence and characteristics of chemical burns. Burns, 43(3), 654-664. doi:10.1016/j.burns.2016.08.037 es_ES
dc.description.references Ye, C., Wang, X., Zhang, Y., Ni, L., Jiang, R., Liu, L., & Han, C. (2016). Ten-year epidemiology of chemical burns in western Zhejiang Province, China. Burns, 42(3), 668-674. doi:10.1016/j.burns.2015.12.004 es_ES
dc.description.references Ghahremani Honarvar, M., & Latifi, M. (2016). Overview of wearable electronics and smart textiles. The Journal of The Textile Institute, 108(4), 631-652. doi:10.1080/00405000.2016.1177870 es_ES
dc.description.references Stoppa, M., & Chiolerio, A. (2014). Wearable Electronics and Smart Textiles: A Critical Review. Sensors, 14(7), 11957-11992. doi:10.3390/s140711957 es_ES
dc.description.references Van der Schueren, L., & De Clerck, K. (2012). Coloration and application of pH-sensitive dyes on textile materials. Coloration Technology, 128(2), 82-90. doi:10.1111/j.1478-4408.2011.00361.x es_ES
dc.description.references Staneva, D., Betcheva, R., & Chovelon, J.-M. (2007). Optical sensor for aliphatic amines based on the simultaneous colorimetric and fluorescence responses of smart textile. Journal of Applied Polymer Science, 106(3), 1950-1956. doi:10.1002/app.26724 es_ES
dc.description.references Steyaert, I., Vancoillie, G., Hoogenboom, R., & De Clerck, K. (2015). Dye immobilization in halochromic nanofibers through blend electrospinning of a dye-containing copolymer and polyamide-6. Polymer Chemistry, 6(14), 2685-2694. doi:10.1039/c5py00060b es_ES
dc.description.references De Meyer, T., Steyaert, I., Hemelsoet, K., Hoogenboom, R., Van Speybroeck, V., & De Clerck, K. (2016). Halochromic properties of sulfonphthaleine dyes in a textile environment: The influence of substituents. Dyes and Pigments, 124, 249-257. doi:10.1016/j.dyepig.2015.09.007 es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e es_ES
dc.description.references Quang, D. T., & Kim, J. S. (2010). Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chemical Reviews, 110(10), 6280-6301. doi:10.1021/cr100154p es_ES
dc.description.references Zhang, X., Yin, J., & Yoon, J. (2014). Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors. Chemical Reviews, 114(9), 4918-4959. doi:10.1021/cr400568b es_ES
dc.description.references Salinas, Y., Ros-Lis, J. V., Vivancos, J.-L., Martínez-Máñez, R., Marcos, M. D., Aucejo, S., … Lorente, I. (2012). Monitoring of chicken meat freshness by means of a colorimetric sensor array. The Analyst, 137(16), 3635. doi:10.1039/c2an35211g es_ES
dc.description.references Esteban, J., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Moragues, M., Soto, J., & Sancenón, F. (2010). Sensitive and Selective Chromogenic Sensing of Carbon Monoxide by Using Binuclear Rhodium Complexes. Angewandte Chemie International Edition, 49(29), 4934-4937. doi:10.1002/anie.201001344 es_ES
dc.description.references Scott, B. J., Wirnsberger, G., & Stucky, G. D. (2001). Mesoporous and Mesostructured Materials for Optical Applications. Chemistry of Materials, 13(10), 3140-3150. doi:10.1021/cm0110730 es_ES
dc.description.references Melde, B., Johnson, B., & Charles, P. (2008). Mesoporous Silicate Materials in Sensing. Sensors, 8(8), 5202-5228. doi:10.3390/s8085202 es_ES
dc.description.references Wagner, T., Haffer, S., Weinberger, C., Klaus, D., & Tiemann, M. (2013). Mesoporous materials as gas sensors. Chem. Soc. Rev., 42(9), 4036-4053. doi:10.1039/c2cs35379b es_ES
dc.description.references Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756 es_ES
dc.description.references Coll, C., Ros-Lis, J. V., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., & Soto, J. (2010). A new approach for the selective and sensitive colorimetric detection of ionic surfactants in water. J. Mater. Chem., 20(8), 1442-1451. doi:10.1039/b910659f es_ES
dc.description.references Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632 es_ES
dc.description.references Sanfeliu, C., Martínez-Máñez, R., Sancenón, F., Soto, J., Puchol, V., Amorós, P., & Marcos, M. D. (2012). Low-cost materials for boron adsorption from water. Journal of Materials Chemistry, 22(48), 25362. doi:10.1039/c2jm32819d es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 es_ES
dc.description.references Descalzo, A. B., Jimenez, D., Marcos, M. D., Martínez-Máñez, R., Soto, J., El Haskouri, J., … Borrachero, M. V. (2002). A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups. Advanced Materials, 14(13-14), 966-969. doi:10.1002/1521-4095(20020705)14:13/14<966::aid-adma966>3.0.co;2-d es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem