- -

Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode

Show full item record

Trujillo Guillen, M.; Bon Corbín, J.; Rivera Ortun, MJ.; Burdio, F.; Berjano, E. (2016). Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode. International Journal of Hyperthermia. 32(8):931-939. doi:10.1080/02656736.2016.1190868

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99060

Files in this item

Item Metadata

Title: Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode
Author: Trujillo Guillen, Macarena Bon Corbín, José Rivera Ortun, María José Burdio, Fernando Berjano, Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Purpose: To develop computer models to mimic the impedance-controlled pulsing protocol implemented in radiofrequency (RF) generators used for clinical practice of radiofrequency ablation (RFA), and to assess the ...[+]
Subjects: Cooled electrode , Finite element method , Impedance control , Pulsing protocol , Radiofrequency ablation , Thermal ablation , Tumour ablation
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Hyperthermia. (issn: 0265-6736 )
DOI: 10.1080/02656736.2016.1190868
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/02656736.2016.1190868
Project ID:
info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/
Thanks:
This work was supported by the Spanish Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad under grant number TEC2014-52383-C3-R (TEC2014-52383-C3-1-R). The authors alone are responsible ...[+]
Type: Artículo

References

Hocquelet, A., Balageas, P., Laurent, C., Blanc, J.-F., Frulio, N., Salut, C., … Trillaud, H. (2015). Radiofrequency ablation versus surgical resection for hepatocellular carcinoma within the Milan criteria: A study of 281 Western patients. International Journal of Hyperthermia, 31(7), 749-757. doi:10.3109/02656736.2015.1068382

Fukushima, T., Ikeda, K., Kawamura, Y., Sorin, Y., Hosaka, T., Kobayashi, M., … Kumada, H. (2015). Randomized Controlled Trial Comparing the Efficacy of Impedance Control and Temperature Control of Radiofrequency Interstitial Thermal Ablation for Treating Small Hepatocellular Carcinoma. Oncology, 89(1), 47-52. doi:10.1159/000375166

Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3 [+]
Hocquelet, A., Balageas, P., Laurent, C., Blanc, J.-F., Frulio, N., Salut, C., … Trillaud, H. (2015). Radiofrequency ablation versus surgical resection for hepatocellular carcinoma within the Milan criteria: A study of 281 Western patients. International Journal of Hyperthermia, 31(7), 749-757. doi:10.3109/02656736.2015.1068382

Fukushima, T., Ikeda, K., Kawamura, Y., Sorin, Y., Hosaka, T., Kobayashi, M., … Kumada, H. (2015). Randomized Controlled Trial Comparing the Efficacy of Impedance Control and Temperature Control of Radiofrequency Interstitial Thermal Ablation for Treating Small Hepatocellular Carcinoma. Oncology, 89(1), 47-52. doi:10.1159/000375166

Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3

Ahmed, M., Liu, Z., Humphries, S., & Nahum Goldberg, S. (2008). Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. International Journal of Hyperthermia, 24(7), 577-588. doi:10.1080/02656730802192661

Lobo, S. M., Liu, Z.-J., Yu, N. C., Humphries, S., Ahmed, M., Cosman, E. R., … Goldberg, S. N. (2005). RF tumour ablation: Computer simulation and mathematical modelling of the effects of electrical and thermal conductivity. International Journal of Hyperthermia, 21(3), 199-213. doi:10.1080/02656730400001108

Solazzo, S. A., Liu, Z., Lobo, S. M., Ahmed, M., Hines-Peralta, A. U., Lenkinski, R. E., & Goldberg, S. N. (2005). Radiofrequency Ablation: Importance of Background Tissue Electrical Conductivity—An Agar Phantom and Computer Modeling Study. Radiology, 236(2), 495-502. doi:10.1148/radiol.2362040965

Barauskas, R., Gulbinas, A., & Barauskas, G. (2007). Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina, 43(4), 310. doi:10.3390/medicina43040039

Haemmerich, D., & Wood, B. J. (2006). Hepatic radiofrequency ablation at low frequencies preferentially heats tumour tissue. International Journal of Hyperthermia, 22(7), 563-574. doi:10.1080/02656730601024727

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

Schutt, D. J., & Haemmerich, D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Medical Physics, 35(8), 3462-3470. doi:10.1118/1.2948388

Zhang, B., Moser, M. A. J., Zhang, E. M., Luo, Y., & Zhang, W. (2015). Numerical analysis of the relationship between the area of target tissue necrosis and the size of target tissue in liver tumours with pulsed radiofrequency ablation. International Journal of Hyperthermia, 31(7), 715-725. doi:10.3109/02656736.2015.1058429

Solazzo, S. A., Ahmed, M., Liu, Z., Hines-Peralta, A. U., & Goldberg, S. N. (2007). High-Power Generator for Radiofrequency Ablation: Larger Electrodes and Pulsing Algorithms in Bovine ex Vivo and Porcine in Vivo Settings. Radiology, 242(3), 743-750. doi:10.1148/radiol.2423052039

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341

Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076

Hall, S. K., Ooi, E. H., & Payne, S. J. (2015). Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. International Journal of Hyperthermia, 31(5), 538-550. doi:10.3109/02656736.2015.1032370

Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x

Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317

Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107

Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004

Belous, A., & Podhajsky, R. J. (2009). The effect of initial and dynamic liver conditions on RF ablation size: a study in perfused and non-perfused animal models. Energy-based Treatment of Tissue and Assessment V. doi:10.1117/12.809597

Song, K. D., Lee, M. W., Park, H. J., Cha, D. I., Kang, T. W., Lee, J., … Rhim, H. (2015). Hepatic radiofrequency ablation:in vivoandex vivocomparisons of 15-gauge (G) and 17-G internally cooled electrodes. The British Journal of Radiology, 88(1050), 20140497. doi:10.1259/bjr.20140497

Cha, J., Choi, D., Lee, M. W., Rhim, H., Kim, Y., Lim, H. K., … Park, C. K. (2009). Radiofrequency Ablation Zones in Ex Vivo Bovine and In Vivo Porcine Livers: Comparison of the Use of Internally Cooled Electrodes and Internally Cooled Wet Electrodes. CardioVascular and Interventional Radiology, 32(6), 1235-1240. doi:10.1007/s00270-009-9600-0

Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020

Romero-Méndez, R., Tobajas, P., Burdío, F., Gonzalez, A., Navarro, A., Grande, L., & Berjano, E. (2012). Electrical-thermal performance of a cooled RF applicator for hepatic ablation with additional distant infusion of hypertonic saline:In vivostudy and preliminary computer modeling. International Journal of Hyperthermia, 28(7), 653-662. doi:10.3109/02656736.2012.711894

Ahmed, M., Lobo, S. M., Weinstein, J., Kruskal, J. B., Gazelle, G. S., Halpern, E. F., … Goldberg, S. N. (2002). Improved Coagulation with Saline Solution Pretreatment during Radiofrequency Tumor Ablation in a Canine Model. Journal of Vascular and Interventional Radiology, 13(7), 717-724. doi:10.1016/s1051-0443(07)61850-8

Chinn, S. B., Lee, F. T., Kennedy, G. D., Chinn, C., Johnson, C. D., Winter, T. C., … Mahvi, D. M. (2001). Effect of Vascular Occlusion on Radiofrequency Ablation of the Liver. American Journal of Roentgenology, 176(3), 789-795. doi:10.2214/ajr.176.3.1760789

Arenas, J., Perez, J. J., Trujillo, M., & Berjano, E. (2014). Computer modeling and ex vivo experiments with a (saline-linked) irrigated electrode for RF-assisted heating. BioMedical Engineering OnLine, 13(1), 164. doi:10.1186/1475-925x-13-164

González-Suárez, A., Trujillo, M., Burdío, F., Andaluz, A., & Berjano, E. (2012). Feasibility study of an internally cooled bipolar applicator for RF coagulation of hepatic tissue: Experimental and computational study. International Journal of Hyperthermia, 28(7), 663-673. doi:10.3109/02656736.2012.716900

Schramm, W., Yang, D., Wood, B. J., Rattay, F., & Haemmerich, D. (2007). Contribution of Direct Heating, Thermal Conduction and Perfusion During Radiofrequency and Microwave Ablation. The Open Biomedical Engineering Journal, 1(1), 47-52. doi:10.2174/1874120700701010047

Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27

Montgomery, R. S., Rahal, A., Dodd, G. D., Leyendecker, J. R., & Hubbard, L. G. (2004). Radiofrequency Ablation of Hepatic Tumors: Variability of Lesion Size Using a Single Ablation Device. American Journal of Roentgenology, 182(3), 657-661. doi:10.2214/ajr.182.3.1820657

SCHUMACHER, B., EICK, O., WITTKAMPF, F., PEZOLD, C., TEBBENJOHANNS, J., JUNG, W., & LUDERITZ, B. (1999). Temperature Response Following Nontraumatic Low Power Radiofrequency Application. Pacing and Clinical Electrophysiology, 22(2), 339-343. doi:10.1111/j.1540-8159.1999.tb00448.x

PETERSEN, H. H., & SVENDSEN, J. H. (2003). Can Lesion Size During Radiofrequency Ablation Be Predicted By the Temperature Rise to a Low Power Test Pulse in Vitro? Pacing and Clinical Electrophysiology, 26(8), 1653-1659. doi:10.1046/j.1460-9592.2003.t01-1-00248.x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record