- -

Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Bon Corbín, José es_ES
dc.contributor.author Rivera Ortun, María José es_ES
dc.contributor.author Burdio, Fernando es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2018-03-09T05:29:28Z
dc.date.available 2018-03-09T05:29:28Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0265-6736 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99060
dc.description.abstract [EN] Purpose: To develop computer models to mimic the impedance-controlled pulsing protocol implemented in radiofrequency (RF) generators used for clinical practice of radiofrequency ablation (RFA), and to assess the appropriateness of the models by comparing the computer results with those obtained in previous experimental studies.Methods: A 12-min RFA was modelled using a cooled electrode (17G, 3cm tip) inserted in hepatic tissue. The short (transverse) diameter of the coagulation zone was assessed under in vivo (with blood perfusion (BP) and considering clamping) and ex vivo (at 21 degrees C) conditions. The computer results obtained by programming voltage pulses were compared with current pulses.Results: The differences between voltage and current pulses were noticeable: using current instead of voltage allows larger coagulation zones to be created, due to the higher energy applied by current pulses. If voltage pulses are employed the model can accurately predict the number of roll-offs, although the waveform of the applied power is clearly not realistic. If current voltages are employed, the applied power waveform matches well with those reported experimentally, but there are significantly fewer roll-offs. Our computer results were overall into the ranges of experimental ones.Conclusions: The proposed models reproduce reasonably well the electrical-thermal performance and coagulation zone size obtained during an impedance-controlled pulsing protocol. es_ES
dc.description.sponsorship This work was supported by the Spanish Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad under grant number TEC2014-52383-C3-R (TEC2014-52383-C3-1-R). The authors alone are responsible for the content and writing of the paper. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cooled electrode es_ES
dc.subject Finite element method es_ES
dc.subject Impedance control es_ES
dc.subject Pulsing protocol es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Thermal ablation es_ES
dc.subject Tumour ablation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02656736.2016.1190868 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Trujillo Guillen, M.; Bon Corbín, J.; Rivera Ortun, MJ.; Burdio, F.; Berjano, E. (2016). Computer modeling of an impedance-controlled pulsing protocol for RF tumor ablation with a cooled electrode. International Journal of Hyperthermia. 32(8):931-939. doi:10.1080/02656736.2016.1190868 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02656736.2016.1190868 es_ES
dc.description.upvformatpinicio 931 es_ES
dc.description.upvformatpfin 939 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\318816 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Hocquelet, A., Balageas, P., Laurent, C., Blanc, J.-F., Frulio, N., Salut, C., … Trillaud, H. (2015). Radiofrequency ablation versus surgical resection for hepatocellular carcinoma within the Milan criteria: A study of 281 Western patients. International Journal of Hyperthermia, 31(7), 749-757. doi:10.3109/02656736.2015.1068382 es_ES
dc.description.references Fukushima, T., Ikeda, K., Kawamura, Y., Sorin, Y., Hosaka, T., Kobayashi, M., … Kumada, H. (2015). Randomized Controlled Trial Comparing the Efficacy of Impedance Control and Temperature Control of Radiofrequency Interstitial Thermal Ablation for Treating Small Hepatocellular Carcinoma. Oncology, 89(1), 47-52. doi:10.1159/000375166 es_ES
dc.description.references Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3 es_ES
dc.description.references Ahmed, M., Liu, Z., Humphries, S., & Nahum Goldberg, S. (2008). Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. International Journal of Hyperthermia, 24(7), 577-588. doi:10.1080/02656730802192661 es_ES
dc.description.references Lobo, S. M., Liu, Z.-J., Yu, N. C., Humphries, S., Ahmed, M., Cosman, E. R., … Goldberg, S. N. (2005). RF tumour ablation: Computer simulation and mathematical modelling of the effects of electrical and thermal conductivity. International Journal of Hyperthermia, 21(3), 199-213. doi:10.1080/02656730400001108 es_ES
dc.description.references Solazzo, S. A., Liu, Z., Lobo, S. M., Ahmed, M., Hines-Peralta, A. U., Lenkinski, R. E., & Goldberg, S. N. (2005). Radiofrequency Ablation: Importance of Background Tissue Electrical Conductivity—An Agar Phantom and Computer Modeling Study. Radiology, 236(2), 495-502. doi:10.1148/radiol.2362040965 es_ES
dc.description.references Barauskas, R., Gulbinas, A., & Barauskas, G. (2007). Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina, 43(4), 310. doi:10.3390/medicina43040039 es_ES
dc.description.references Haemmerich, D., & Wood, B. J. (2006). Hepatic radiofrequency ablation at low frequencies preferentially heats tumour tissue. International Journal of Hyperthermia, 22(7), 563-574. doi:10.1080/02656730601024727 es_ES
dc.description.references Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 es_ES
dc.description.references Schutt, D. J., & Haemmerich, D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Medical Physics, 35(8), 3462-3470. doi:10.1118/1.2948388 es_ES
dc.description.references Zhang, B., Moser, M. A. J., Zhang, E. M., Luo, Y., & Zhang, W. (2015). Numerical analysis of the relationship between the area of target tissue necrosis and the size of target tissue in liver tumours with pulsed radiofrequency ablation. International Journal of Hyperthermia, 31(7), 715-725. doi:10.3109/02656736.2015.1058429 es_ES
dc.description.references Solazzo, S. A., Ahmed, M., Liu, Z., Hines-Peralta, A. U., & Goldberg, S. N. (2007). High-Power Generator for Radiofrequency Ablation: Larger Electrodes and Pulsing Algorithms in Bovine ex Vivo and Porcine in Vivo Settings. Radiology, 242(3), 743-750. doi:10.1148/radiol.2423052039 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 es_ES
dc.description.references Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 es_ES
dc.description.references Hall, S. K., Ooi, E. H., & Payne, S. J. (2015). Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. International Journal of Hyperthermia, 31(5), 538-550. doi:10.3109/02656736.2015.1032370 es_ES
dc.description.references Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 es_ES
dc.description.references Belous, A., & Podhajsky, R. J. (2009). The effect of initial and dynamic liver conditions on RF ablation size: a study in perfused and non-perfused animal models. Energy-based Treatment of Tissue and Assessment V. doi:10.1117/12.809597 es_ES
dc.description.references Song, K. D., Lee, M. W., Park, H. J., Cha, D. I., Kang, T. W., Lee, J., … Rhim, H. (2015). Hepatic radiofrequency ablation:in vivoandex vivocomparisons of 15-gauge (G) and 17-G internally cooled electrodes. The British Journal of Radiology, 88(1050), 20140497. doi:10.1259/bjr.20140497 es_ES
dc.description.references Cha, J., Choi, D., Lee, M. W., Rhim, H., Kim, Y., Lim, H. K., … Park, C. K. (2009). Radiofrequency Ablation Zones in Ex Vivo Bovine and In Vivo Porcine Livers: Comparison of the Use of Internally Cooled Electrodes and Internally Cooled Wet Electrodes. CardioVascular and Interventional Radiology, 32(6), 1235-1240. doi:10.1007/s00270-009-9600-0 es_ES
dc.description.references Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020 es_ES
dc.description.references Romero-Méndez, R., Tobajas, P., Burdío, F., Gonzalez, A., Navarro, A., Grande, L., & Berjano, E. (2012). Electrical-thermal performance of a cooled RF applicator for hepatic ablation with additional distant infusion of hypertonic saline:In vivostudy and preliminary computer modeling. International Journal of Hyperthermia, 28(7), 653-662. doi:10.3109/02656736.2012.711894 es_ES
dc.description.references Ahmed, M., Lobo, S. M., Weinstein, J., Kruskal, J. B., Gazelle, G. S., Halpern, E. F., … Goldberg, S. N. (2002). Improved Coagulation with Saline Solution Pretreatment during Radiofrequency Tumor Ablation in a Canine Model. Journal of Vascular and Interventional Radiology, 13(7), 717-724. doi:10.1016/s1051-0443(07)61850-8 es_ES
dc.description.references Chinn, S. B., Lee, F. T., Kennedy, G. D., Chinn, C., Johnson, C. D., Winter, T. C., … Mahvi, D. M. (2001). Effect of Vascular Occlusion on Radiofrequency Ablation of the Liver. American Journal of Roentgenology, 176(3), 789-795. doi:10.2214/ajr.176.3.1760789 es_ES
dc.description.references Arenas, J., Perez, J. J., Trujillo, M., & Berjano, E. (2014). Computer modeling and ex vivo experiments with a (saline-linked) irrigated electrode for RF-assisted heating. BioMedical Engineering OnLine, 13(1), 164. doi:10.1186/1475-925x-13-164 es_ES
dc.description.references González-Suárez, A., Trujillo, M., Burdío, F., Andaluz, A., & Berjano, E. (2012). Feasibility study of an internally cooled bipolar applicator for RF coagulation of hepatic tissue: Experimental and computational study. International Journal of Hyperthermia, 28(7), 663-673. doi:10.3109/02656736.2012.716900 es_ES
dc.description.references Schramm, W., Yang, D., Wood, B. J., Rattay, F., & Haemmerich, D. (2007). Contribution of Direct Heating, Thermal Conduction and Perfusion During Radiofrequency and Microwave Ablation. The Open Biomedical Engineering Journal, 1(1), 47-52. doi:10.2174/1874120700701010047 es_ES
dc.description.references Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 es_ES
dc.description.references Montgomery, R. S., Rahal, A., Dodd, G. D., Leyendecker, J. R., & Hubbard, L. G. (2004). Radiofrequency Ablation of Hepatic Tumors: Variability of Lesion Size Using a Single Ablation Device. American Journal of Roentgenology, 182(3), 657-661. doi:10.2214/ajr.182.3.1820657 es_ES
dc.description.references SCHUMACHER, B., EICK, O., WITTKAMPF, F., PEZOLD, C., TEBBENJOHANNS, J., JUNG, W., & LUDERITZ, B. (1999). Temperature Response Following Nontraumatic Low Power Radiofrequency Application. Pacing and Clinical Electrophysiology, 22(2), 339-343. doi:10.1111/j.1540-8159.1999.tb00448.x es_ES
dc.description.references PETERSEN, H. H., & SVENDSEN, J. H. (2003). Can Lesion Size During Radiofrequency Ablation Be Predicted By the Temperature Rise to a Low Power Test Pulse in Vitro? Pacing and Clinical Electrophysiology, 26(8), 1653-1659. doi:10.1046/j.1460-9592.2003.t01-1-00248.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem