Mostrar el registro sencillo del ítem
dc.contributor.author | Cutanda-Henriquez, V. | es_ES |
dc.contributor.author | Andersen, Peter Risby | es_ES |
dc.contributor.author | Jensen, J. Sondergaard | es_ES |
dc.contributor.author | Juhl, P. Moller | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2018-03-15T05:23:41Z | |
dc.date.available | 2018-03-15T05:23:41Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0218-396X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/99373 | |
dc.description.abstract | [EN] In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier¿Stokes equations with no flow. In this paper, such models with acoustic losses are applied to an acoustic metamaterial. Metamaterials are structures formed by smaller, usually periodic, units showing remarkable physical properties when observed as a whole. Acoustic losses are relevant in metamaterials in the millimeter scale. In addition, their geometry is intricate and challenging for numerical implementation. The results are compared with existing measurements. | es_ES |
dc.description.sponsorship | The authors wish to thank Mads J. Herring Jensen, from the company COMSOL, for his support in setting up the FEM model of the metamaterial. J. Sanchez-Dehesa acknowledges the support by the Spanish Ministerio de Economia y Competitividad, and the European Union Fondo Europeo de Desarrollo Regional (FEDER) through Project No. TEC2014-53088-C3-1-R. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | World Scientific | es_ES |
dc.relation.ispartof | Journal of Computational Acoustics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Boundary element method | es_ES |
dc.subject | Acoustic metamaterials | es_ES |
dc.subject | Viscous and thermal losses | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | |
dc.identifier.doi | 10.1142/S0218396X17500060 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Cutanda-Henriquez, V.; Andersen, PR.; Jensen, JS.; Juhl, PM.; Sánchez-Dehesa Moreno-Cid, J. (2017). A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses. Journal of Computational Acoustics. 25(4):1750006-1-1750006-11. doi:10.1142/S0218396X17500060 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 12th International Conference on Theoretical and Computational Acoustics (ICTCA) | |
dc.relation.conferencedate | October 11-16, 2015 | |
dc.relation.conferenceplace | Hangzhou, China | |
dc.relation.publisherversion | https://doi.org/10.1142/S0218396X17500060 | es_ES |
dc.description.upvformatpinicio | 1750006-1 | es_ES |
dc.description.upvformatpfin | 1750006-11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\348635 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2 | es_ES |
dc.description.references | Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1 | es_ES |
dc.description.references | Cutanda-Henríquez, V., & Juhl, P. M. (2013). An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses. The Journal of the Acoustical Society of America, 134(5), 3409-3418. doi:10.1121/1.4823840 | es_ES |
dc.description.references | Bruneau, M., Herzog, P., Kergomard, J., & Polack, J. D. (1989). General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries. Wave Motion, 11(5), 441-451. doi:10.1016/0165-2125(89)90018-8 | es_ES |
dc.description.references | Kampinga, W. R., Wijnant, Y. H., & de Boer, A. (2010). Performance of Several Viscothermal Acoustic Finite Elements. Acta Acustica united with Acustica, 96(1), 115-124. doi:10.3813/aaa.918262 | es_ES |
dc.description.references | Kampinga, W. R., Wijnant, Y. H., & de Boer, A. (2011). An Efficient Finite Element Model for Viscothermal Acoustics. Acta Acustica united with Acustica, 97(4), 618-631. doi:10.3813/aaa.918442 | es_ES |
dc.description.references | BELTMAN, W. M. (1999). VISCOTHERMAL WAVE PROPAGATION INCLUDING ACOUSTO-ELASTIC INTERACTION, PART I: THEORY. Journal of Sound and Vibration, 227(3), 555-586. doi:10.1006/jsvi.1999.2355 | es_ES |
dc.description.references | Graciá-Salgado, R., García-Chocano, V. M., Torrent, D., & Sánchez-Dehesa, J. (2013). Negative mass density andρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B, 88(22). doi:10.1103/physrevb.88.224305 | es_ES |
dc.description.references | Homentcovschi, D., & Miles, R. N. (2011). An analytical-numerical method for determining the mechanical response of a condenser microphone. The Journal of the Acoustical Society of America, 130(6), 3698-3705. doi:10.1121/1.3652853 | es_ES |
dc.description.references | Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579 | es_ES |