- -

A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses

Mostrar el registro completo del ítem

Cutanda-Henriquez, V.; Andersen, PR.; Jensen, JS.; Juhl, PM.; Sánchez-Dehesa Moreno-Cid, J. (2017). A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses. Journal of Computational Acoustics. 25(4):1750006-1-1750006-11. doi:10.1142/S0218396X17500060

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99373

Ficheros en el ítem

Metadatos del ítem

Título: A Numerical Model of an Acoustic Metamaterial Using the Boundary Element Method Including Viscous and Thermal Losses
Autor: Cutanda-Henriquez, V. Andersen, Peter Risby Jensen, J. Sondergaard Juhl, P. Moller Sánchez-Dehesa Moreno-Cid, José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] In recent years, boundary element method (BEM) and finite element method (FEM) implementations of acoustics in fluids with viscous and thermal losses have been developed. They are based on the linearized Navier¿Stokes ...[+]
Palabras clave: Boundary element method , Acoustic metamaterials , Viscous and thermal losses
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Computational Acoustics. (issn: 0218-396X )
DOI: 10.1142/S0218396X17500060
Editorial:
World Scientific
Versión del editor: https://doi.org/10.1142/S0218396X17500060
Título del congreso: 12th International Conference on Theoretical and Computational Acoustics (ICTCA)
Lugar del congreso: Hangzhou, China
Fecha congreso: October 11-16, 2015
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2014-53088-C3-1-R/ES/DISPOSITIVOS PASIVOS BASADOS EN MATERIALES FUNCIONALES AVANZADOS CON RESONADORES DE ALTAS PRESTACIONES/
Agradecimientos:
The authors wish to thank Mads J. Herring Jensen, from the company COMSOL, for his support in setting up the FEM model of the metamaterial. J. Sanchez-Dehesa acknowledges the support by the Spanish Ministerio de Economia ...[+]
Tipo: Artículo Comunicación en congreso

References

Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2

Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1

Cutanda-Henríquez, V., & Juhl, P. M. (2013). An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses. The Journal of the Acoustical Society of America, 134(5), 3409-3418. doi:10.1121/1.4823840 [+]
Craster, R. V., & Guenneau, S. (Eds.). (2013). Acoustic Metamaterials. Springer Series in Materials Science. doi:10.1007/978-94-007-4813-2

Cummer, S. A., Christensen, J., & Alù, A. (2016). Controlling sound with acoustic metamaterials. Nature Reviews Materials, 1(3). doi:10.1038/natrevmats.2016.1

Cutanda-Henríquez, V., & Juhl, P. M. (2013). An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses. The Journal of the Acoustical Society of America, 134(5), 3409-3418. doi:10.1121/1.4823840

Bruneau, M., Herzog, P., Kergomard, J., & Polack, J. D. (1989). General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries. Wave Motion, 11(5), 441-451. doi:10.1016/0165-2125(89)90018-8

Kampinga, W. R., Wijnant, Y. H., & de Boer, A. (2010). Performance of Several Viscothermal Acoustic Finite Elements. Acta Acustica united with Acustica, 96(1), 115-124. doi:10.3813/aaa.918262

Kampinga, W. R., Wijnant, Y. H., & de Boer, A. (2011). An Efficient Finite Element Model for Viscothermal Acoustics. Acta Acustica united with Acustica, 97(4), 618-631. doi:10.3813/aaa.918442

BELTMAN, W. M. (1999). VISCOTHERMAL WAVE PROPAGATION INCLUDING ACOUSTO-ELASTIC INTERACTION, PART I: THEORY. Journal of Sound and Vibration, 227(3), 555-586. doi:10.1006/jsvi.1999.2355

Graciá-Salgado, R., García-Chocano, V. M., Torrent, D., & Sánchez-Dehesa, J. (2013). Negative mass density andρ-near-zero quasi-two-dimensional metamaterials: Design and applications. Physical Review B, 88(22). doi:10.1103/physrevb.88.224305

Homentcovschi, D., & Miles, R. N. (2011). An analytical-numerical method for determining the mechanical response of a condenser microphone. The Journal of the Acoustical Society of America, 130(6), 3698-3705. doi:10.1121/1.3652853

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem