- -

Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pascual, Lluís es_ES
dc.contributor.author El Sayed Shehata Nasr, Sameh es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2018-03-23T13:05:49Z
dc.date.available 2018-03-23T13:05:49Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1861-4728 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99648
dc.description.abstract [EN] Two different acetylcholinesterase (AChE)-capped mesoporous silica nanoparticles (MSNs), S1-AChE and S2-AChE, were prepared and characterized. MSNs were loaded with rhodamine B and the external surface was functionalized with either pyridostigmine derivative P1 (to yield solid S1) or neostigmine derivative P2 (to obtain S2). The final capped materials were obtained by coordinating grafted P1 or P2 with AChE ' s active sites (to give S1-AChE and S2-AChE, respectively). Both materials were able to release rho-damine B in the presence of diisopropylfluorophosphate (DFP) or neostigmine in a concentration-dependent manner via the competitive displacement of AChE through DFP and neostigmine coordination with the AChE ' s active sites. The responses of S1-AChE and S2-AChE were also tested with other enzyme inhibitors and substrates. These studies suggest that S1-AChE nanoparticles can be used for the selective detection of nerve agent simulant DFP and paraoxon. es_ES
dc.description.sponsorship Financial support from the Spanish Government and FEDER funds (Project MAT2015‐64139‐C4‐1‐R, AGL2015‐70235‐C2‐2‐R) and the Generalitat Valencia (Project PROMETEOII/2014/047) is gratefully acknowledged. Ll. P. is grateful to the Universitat Politécnica de Valencia for his grant.
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - An Asian Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acetylcholinesterase es_ES
dc.subject Enzyme inhibitors es_ES
dc.subject Enzyme-capped nanoparticles es_ES
dc.subject Neostigmine es_ES
dc.subject Nerve agent simulants es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/asia.201700031 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Pascual, L.; El Sayed Shehata Nasr, S.; Marcos Martínez, MD.; Martínez-Máñez, R.; Sancenón Galarza, F. (2017). Acetylcholinesterase-capped Mesoporous Silica Nanoparticles Controlled by the Presence of Inhibitors. Chemistry - An Asian Journal. 12(7):775-784. https://doi.org/10.1002/asia.201700031 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/asia.201700031 es_ES
dc.description.upvformatpinicio 775 es_ES
dc.description.upvformatpfin 784 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\336319 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 es_ES
dc.description.references Slowing, I. I., Trewyn, B. G., Giri, S., & Lin, V. S.-Y. (2007). Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications. Advanced Functional Materials, 17(8), 1225-1236. doi:10.1002/adfm.200601191 es_ES
dc.description.references Yang, X., Liu, X., Liu, Z., Pu, F., Ren, J., & Qu, X. (2012). Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles. Advanced Materials, 24(21), 2890-2895. doi:10.1002/adma.201104797 es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). Die supramolekulare Chemie organisch-anorganischer Hybrid-Nanomaterialien. Angewandte Chemie, 118(36), 6068-6093. doi:10.1002/ange.200600734 es_ES
dc.description.references Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 es_ES
dc.description.references Attard, G. S., Glyde, J. C., & Göltner, C. G. (1995). Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 378(6555), 366-368. doi:10.1038/378366a0 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Cai, Q., Luo, Z.-S., Pang, W.-Q., Fan, Y.-W., Chen, X.-H., & Cui, F.-Z. (2001). Dilute Solution Routes to Various Controllable Morphologies of MCM-41 Silica with a Basic Medium†. Chemistry of Materials, 13(2), 258-263. doi:10.1021/cm990661z es_ES
dc.description.references Chan, H. B. S., Budd, P. M., & Naylor, T. deV. (2001). Control of mesostructured silica particle morphology. Journal of Materials Chemistry, 11(3), 951-957. doi:10.1039/b005713o es_ES
dc.description.references Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g es_ES
dc.description.references Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018x es_ES
dc.description.references Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488 es_ES
dc.description.references Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporöse Materialien für den Wirkstofftransport. Angewandte Chemie, 119(40), 7692-7703. doi:10.1002/ange.200604488 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Radhakrishnan, K., Tripathy, J., Gnanadhas, D. P., Chakravortty, D., & Raichur, A. M. (2014). Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents. RSC Adv., 4(86), 45961-45968. doi:10.1039/c4ra07815b es_ES
dc.description.references Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 es_ES
dc.description.references De la Torre, C., Mondragón, L., Coll, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Orzáez, M. (2014). Cathepsin-B Induced Controlled Release from Peptide-Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 20(47), 15309-15314. doi:10.1002/chem.201404382 es_ES
dc.description.references Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161e es_ES
dc.description.references Candel, I., Aznar, E., Mondragón, L., Torre, C. de la, Martínez-Máñez, R., Sancenón, F., … Parra, M. (2012). Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 4(22), 7237. doi:10.1039/c2nr32062b es_ES
dc.description.references Mas, N., Agostini, A., Mondragón, L., Bernardos, A., Sancenón, F., Marcos, M. D., … Pérez-Payá, E. (2012). Enzyme-Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 19(4), 1346-1356. doi:10.1002/chem.201202740 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 es_ES
dc.description.references Zhu, Y., Meng, W., & Hanagata, N. (2011). Cytosine-phosphodiester-guanine oligodeoxynucleotide (CpG ODN)-capped hollow mesoporous silica particles for enzyme-triggered drug delivery. Dalton Transactions, 40(39), 10203. doi:10.1039/c1dt11114k es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663 es_ES
dc.description.references Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k es_ES
dc.description.references Chen, M., Huang, C., He, C., Zhu, W., Xu, Y., & Lu, Y. (2012). A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. Chemical Communications, 48(76), 9522. doi:10.1039/c2cc34290a es_ES
dc.description.references Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b es_ES
dc.description.references Díez, P., Sánchez, A., Torre, C. de la, Gamella, M., Martínez-Ruíz, P., Aznar, E., … Villalonga, R. (2016). Neoglycoenzyme-Gated Mesoporous Silica Nanoparticles: Toward the Design of Nanodevices for Pulsatile Programmed Sequential Delivery. ACS Applied Materials & Interfaces, 8(12), 7657-7665. doi:10.1021/acsami.5b12645 es_ES
dc.description.references Yang, X., Pu, F., Chen, C., Ren, J., & Qu, X. (2012). An enzyme-responsive nanocontainer as an intelligent signal-amplification platform for a multiple proteases assay. Chemical Communications, 48(90), 11133. doi:10.1039/c2cc36340b es_ES
dc.description.references Datz, S., Argyo, C., Gattner, M., Weiss, V., Brunner, K., Bretzler, J., … Bein, T. (2016). Genetically designed biomolecular capping system for mesoporous silica nanoparticles enables receptor-mediated cell uptake and controlled drug release. Nanoscale, 8(15), 8101-8110. doi:10.1039/c5nr08163g es_ES
dc.description.references Sun, X., Zhao, Y., Lin, V. S.-Y., Slowing, I. I., & Trewyn, B. G. (2011). Luciferase and Luciferin Co-immobilized Mesoporous Silica Nanoparticle Materials for Intracellular Biocatalysis. Journal of the American Chemical Society, 133(46), 18554-18557. doi:10.1021/ja2080168 es_ES
dc.description.references Liu, P., Wang, X., Hiltunen, K., & Chen, Z. (2015). Controllable Drug Release System in Living Cells Triggered by Enzyme–Substrate Recognition. ACS Applied Materials & Interfaces, 7(48), 26811-26818. doi:10.1021/acsami.5b08914 es_ES
dc.description.references Wang, X., Liu, P., Chen, Z., & Shen, J. (2016). A drug release switch based on protein-inhibitor supramolecular interaction. RSC Advances, 6(30), 25480-25484. doi:10.1039/c6ra03543d es_ES
dc.description.references Rim, H. P., Min, K. H., Lee, H. J., Jeong, S. Y., & Lee, S. C. (2011). pH-Tunable Calcium Phosphate Covered Mesoporous Silica Nanocontainers for Intracellular Controlled Release of Guest Drugs. Angewandte Chemie International Edition, 50(38), 8853-8857. doi:10.1002/anie.201101536 es_ES
dc.description.references Rim, H. P., Min, K. H., Lee, H. J., Jeong, S. Y., & Lee, S. C. (2011). pH-Tunable Calcium Phosphate Covered Mesoporous Silica Nanocontainers for Intracellular Controlled Release of Guest Drugs. Angewandte Chemie, 123(38), 9015-9019. doi:10.1002/ange.201101536 es_ES
dc.description.references Zhao, W., Zhang, H., He, Q., Li, Y., Gu, J., Li, L., … Shi, J. (2011). A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications, 47(33), 9459. doi:10.1039/c1cc12740c es_ES
dc.description.references El Sayed, S., Milani, M., Milanese, C., Licchelli, M., Martínez-Máñez, R., & Sancenón, F. (2016). Anions as Triggers in Controlled Release Protocols from Mesoporous Silica Nanoparticles Functionalized with Macrocyclic Copper(II) Complexes. Chemistry - A European Journal, 22(39), 13935-13945. doi:10.1002/chem.201601024 es_ES
dc.description.references Tukappa, A., Ultimo, A., de la Torre, C., Pardo, T., Sancenón, F., & Martínez-Máñez, R. (2016). Polyglutamic Acid-Gated Mesoporous Silica Nanoparticles for Enzyme-Controlled Drug Delivery. Langmuir, 32(33), 8507-8515. doi:10.1021/acs.langmuir.6b01715 es_ES
dc.description.references Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580 es_ES
dc.description.references De la Torre, C., Agostini, A., Mondragón, L., Orzáez, M., Sancenón, F., Martínez-Máñez, R., … Pérez-Payá, E. (2014). Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chem. Commun., 50(24), 3184-3186. doi:10.1039/c3cc49421g es_ES
dc.description.references Oroval, M., Climent, E., Coll, C., Eritja, R., Aviñó, A., Marcos, M. D., … Amorós, P. (2013). An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 49(48), 5480. doi:10.1039/c3cc42157k es_ES
dc.description.references Pascual, L., Sayed, S. E., Martínez-Máñez, R., Costero, A. M., Gil, S., Gaviña, P., & Sancenón, F. (2016). Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 18(21), 5548-5551. doi:10.1021/acs.orglett.6b02793 es_ES
dc.description.references Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511 es_ES
dc.description.references Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie, 117(19), 2978-2982. doi:10.1002/ange.200461511 es_ES
dc.description.references Lorke, D. E., Hasan, M. Y., Arafat, K., Kuča, K., Musilek, K., Schmitt, A., & Petroianu, G. A. (2008). In vitro oxime protection of human red blood cell acetylcholinesterase inhibited by diisopropyl-fluorophosphate. Journal of Applied Toxicology, 28(4), 422-429. doi:10.1002/jat.1344 es_ES
dc.description.references Petroianu, G., Kühn, F., Thyes, C., Ewald, V., & Missler, A. (2003). In vitroprotection of plasma cholinesterases by metoclopramide from inhibition by paraoxon. Journal of Applied Toxicology, 23(1), 75-79. doi:10.1002/jat.891 es_ES
dc.description.references Grove, S. J. A., Kaur, J., Muir, A. W., Pow, E., Tarver, G. J., & Zhang, M.-Q. (2002). Oxyaniliniums as acetylcholinesterase inhibitors for the reversal of neuromuscular block. Bioorganic & Medicinal Chemistry Letters, 12(2), 193-196. doi:10.1016/s0960-894x(01)00703-x es_ES
dc.description.references Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b es_ES
dc.description.references Fan, C., Tsui, L., & Liao, M.-C. (2011). Parathion degradation and its intermediate formation by Fenton process in neutral environment. Chemosphere, 82(2), 229-236. doi:10.1016/j.chemosphere.2010.10.016 es_ES
dc.description.references Fomsgaard, I. S. (1995). Degradation of Pesticides in Subsurface Soils, Unsaturated Zone—a Review Of Methods and Results. International Journal of Environmental Analytical Chemistry, 58(1-4), 231-245. doi:10.1080/03067319508033127 es_ES
dc.description.references Turan, J., Kesik, M., Soylemez, S., Goker, S., Coskun, S., Unalan, H. E., & Toppare, L. (2016). An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk. Sensors and Actuators B: Chemical, 228, 278-286. doi:10.1016/j.snb.2016.01.034 es_ES
dc.description.references Funari, R., Della Ventura, B., Carrieri, R., Morra, L., Lahoz, E., Gesuele, F., … Velotta, R. (2015). Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosensors and Bioelectronics, 67, 224-229. doi:10.1016/j.bios.2014.08.020 es_ES
dc.description.references Fu, G., Chen, W., Yue, X., & Jiang, X. (2013). Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Talanta, 103, 110-115. doi:10.1016/j.talanta.2012.10.016 es_ES
dc.description.references Wang, K., Wang, L., Jiang, W., & Hu, J. (2011). A sensitive enzymatic method for paraoxon detection based on enzyme inhibition and fluorescence quenching. Talanta, 84(2), 400-405. doi:10.1016/j.talanta.2011.01.056 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem