- -

Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces

Mostrar el registro completo del ítem

Singh, S.; Gupta, D.; Martínez Molada, E.; Hueso Pagoaga, JL. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics. 13(6):4219-4235. doi:10.1007/s00009-016-0741-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99653

Ficheros en el ítem

Metadatos del ítem

Título: Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces
Autor: Singh, Sukhjit Gupta, D.K. Martínez Molada, Eulalia Hueso Pagoaga, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Semilocal convergence for an iteration of order five for solving nonlinear equations in Banach spaces is established under second-order Fr,chet derivative satisfying the Lipschitz condition. It is done by deriving a ...[+]
Palabras clave: Nonlinear equations , Lipschitz condition , Semilocal convergence , Hammerstein integral equation , Fredholm integral equation
Derechos de uso: Reserva de todos los derechos
Fuente:
Mediterranean Journal of Mathematics. (issn: 1660-5446 )
DOI: 10.1007/s00009-016-0741-5
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s00009-016-0741-5
Agradecimientos:
The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial ...[+]
Tipo: Artículo

References

Cordero A., Hueso J.L., Martinez E., Torregrosa J.R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)

Chen, L., Gu, C., Ma Y.: Semilocal convergence for a fifth order Newton’s method using Recurrence relations in Banach spaces. J. Appl. Math. 2011, 1–15 (2011)

Wang X., Kou J., Gu C.: Semilocal convergence of a sixth order Jarrat method in Banach spaces. Numer. Algorithms 57, 441–456 (2011) [+]
Cordero A., Hueso J.L., Martinez E., Torregrosa J.R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)

Chen, L., Gu, C., Ma Y.: Semilocal convergence for a fifth order Newton’s method using Recurrence relations in Banach spaces. J. Appl. Math. 2011, 1–15 (2011)

Wang X., Kou J., Gu C.: Semilocal convergence of a sixth order Jarrat method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)

Zheng L., Gu C.: Semilocal convergence of a sixth order method in Banach spaces. Numer. Algorithms 61, 413–427 (2012)

Zheng L., Gu C.: Recurrence relations for semilocal convergence of a fifth order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)

Proinov P.D., Ivanov S.I.: On the convergence of Halley’s method for multiple polynomial zeros. Mediterr. J. Math. 12, 555–572 (2015)

Ezquerro, J.A., Hernández-Verón M.A.: On the domain of starting points of Newton’s method under center lipschitz conditions. Mediterr. J. Math. (2015). doi: 10.1007/s00009-015-0596-1

Cordero A., Hernández-Verón M.A., Romero N., Torregrosa J.R.: Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 273, 205–213 (2015)

Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007)

Hueso J.L., Martínez E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)

Argyros, I.K., Hilout S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp., New Jersey (2013)

Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)

Argyros I.K., Khattri S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2004)

Argyros I.K., Hilout A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

Kantorovich, L.V., Akilov G.P.: Functional analysis. Pergamon Press, Oxford (1982)

Argyros I.K., George S., Magreñán A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

Argyros I.K., Magreñán A.A.: A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2015)

Amat S., Hernández M.A., Romero N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)

Chun, C., St $${\breve{a}}$$ a ˘ nic $${\breve{a}}$$ a ˘ , P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)

Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces, 3rd edn. Academic Press, New-York (1977)

Jaiswal J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algorithms 71, 933–951 (2015)

Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem