- -

Local convergence of a family of iterative methods for Hammerstein equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local convergence of a family of iterative methods for Hammerstein equations

Mostrar el registro completo del ítem

Martínez Molada, E.; Singh, S.; Hueso Pagoaga, JL.; Gupta, D. (2016). Local convergence of a family of iterative methods for Hammerstein equations. Journal of Mathematical Chemistry. 54(7):1370-1386. https://doi.org/10.1007/s10910-016-0602-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99664

Ficheros en el ítem

Metadatos del ítem

Título: Local convergence of a family of iterative methods for Hammerstein equations
Autor: Martínez Molada, Eulalia Singh, Sukhjit Hueso Pagoaga, José Luís Gupta, D.K.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper we give a local convergence result for a uniparametric family of iterative methods for nonlinear equations in Banach spaces. We assume boundedness conditions involving only the first Fr,chet derivative, ...[+]
Palabras clave: Nonlinear systems , Iterative method , Banach space , Local convergence , Complex dynamics , Hammerstein equation
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-016-0602-2
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s10910-016-0602-2
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./
Agradecimientos:
This research was supported by Ministerio de Ciencia y Tecnologia MTM2014-52016-C2-02.
This research was supported by Ministerio de Ciencia y Tecnología MTM2014-52016-C2-02.
Tipo: Artículo

References

I.K. Argyros, S. Hilout, M.A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering (Nova Publishers, New York, 2011)

J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)

A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces (Academic Press, New York, 1973) [+]
I.K. Argyros, S. Hilout, M.A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering (Nova Publishers, New York, 2011)

J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)

A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces (Academic Press, New York, 1973)

I.K. Argyros, J.A. Ezquerro, J.M. Gutiárrez, M.A. Hernández, S. Hilout, On the semilocal convergence of efficient ChebyshevSecant-type methods. J. Comput. Appl. Math. 235, 3195–3206 (2011)

José L. Hueso, E. Martínez, Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)

X. Wang, C. Gu, J. Kou, Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algorithms 54, 497–516 (2011)

J. Kou, Y. Li, X. Wang, A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)

L. Zheng, C. Gu, Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)

S. Amat, M.A. Hernández, N. Romero, A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)

X. Wang, J. Kou, C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)

A. Cordero, J.A. Ezquerro, M.A. Hernández-Verón, J.R. Torregrosa, On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)

I.K. Argyros, S. Hilout, On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)

X. Feng, Y. He, High order oterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007)

X. Wang, J. Kou, Y. Li, Modified Jarratt method with sixth-order convergence. Appl. Math. Lett. 22, 1798–1802 (2009)

A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (CRC Press, Boca Raton, 1998)

S. Plaza, N. Romero, Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)

A. Cordero, J.R. Torregrosa, P. Vindel, Study of the dynamics of third-order iterative methods on quadratic polynomials. Int. J. Comput. Math. 89(13–14), 1826–1836 (2012)

Gerardo Honorato, Sergio Plaza, Natalia Romero, Dynamics of a higher-order family of iterative methods. J. Complex. 27(2), 221–229 (2011)

J.M. Gutirrez, M.A. Hernández, N. Romero, Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233(10), 2688–2695 (2010)

I.K. Argyros, A.A. Magreñan, A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms. doi: 10.1007/s11075-015-9981-x

I.K. Argyros, S. George, Local convergence of modified Halley-like methods with less computation of inversion (Novi Sad J. Math, Draft version, 2015)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem