I.K. Argyros, S. Hilout, M.A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering (Nova Publishers, New York, 2011)
J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)
A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces (Academic Press, New York, 1973)
[+]
I.K. Argyros, S. Hilout, M.A. Tabatabai, Mathematical Modelling with Applications in Biosciences and Engineering (Nova Publishers, New York, 2011)
J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1964)
A.M. Ostrowski, Solutions of Equations in Euclidean and Banach Spaces (Academic Press, New York, 1973)
I.K. Argyros, J.A. Ezquerro, J.M. Gutiárrez, M.A. Hernández, S. Hilout, On the semilocal convergence of efficient ChebyshevSecant-type methods. J. Comput. Appl. Math. 235, 3195–3206 (2011)
José L. Hueso, E. Martínez, Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)
X. Wang, C. Gu, J. Kou, Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algorithms 54, 497–516 (2011)
J. Kou, Y. Li, X. Wang, A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)
L. Zheng, C. Gu, Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)
S. Amat, M.A. Hernández, N. Romero, A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)
X. Wang, J. Kou, C. Gu, Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)
A. Cordero, J.A. Ezquerro, M.A. Hernández-Verón, J.R. Torregrosa, On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)
I.K. Argyros, S. Hilout, On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)
S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87–93 (2000)
X. Feng, Y. He, High order oterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007)
X. Wang, J. Kou, Y. Li, Modified Jarratt method with sixth-order convergence. Appl. Math. Lett. 22, 1798–1802 (2009)
A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (CRC Press, Boca Raton, 1998)
S. Plaza, N. Romero, Attracting cycles for the relaxed Newton’s method. J. Comput. Appl. Math. 235(10), 3238–3244 (2011)
A. Cordero, J.R. Torregrosa, P. Vindel, Study of the dynamics of third-order iterative methods on quadratic polynomials. Int. J. Comput. Math. 89(13–14), 1826–1836 (2012)
Gerardo Honorato, Sergio Plaza, Natalia Romero, Dynamics of a higher-order family of iterative methods. J. Complex. 27(2), 221–229 (2011)
J.M. Gutirrez, M.A. Hernández, N. Romero, Dynamics of a new family of iterative processes for quadratic polynomials. J. Comput. Appl. Math. 233(10), 2688–2695 (2010)
I.K. Argyros, A.A. Magreñan, A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms. doi: 10.1007/s11075-015-9981-x
I.K. Argyros, S. George, Local convergence of modified Halley-like methods with less computation of inversion (Novi Sad J. Math, Draft version, 2015)
[-]