- -

Semilocal convergence of a family of iterative methods in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Semilocal convergence of a family of iterative methods in Banach spaces

Mostrar el registro completo del ítem

Hueso Pagoaga, JL.; Martínez Molada, E. (2014). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms. 67(2):365-384. https://doi.org/10.1007/s11075-013-9795-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99723

Ficheros en el ítem

Metadatos del ítem

Título: Semilocal convergence of a family of iterative methods in Banach spaces
Autor: Hueso Pagoaga, José Luís Martínez Molada, Eulalia
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this work, we prove a third and fourth convergence order result for a family of iterative methods for solving nonlinear systems in Banach spaces. We analyze the semilocal convergence by using recurrence relations, ...[+]
Palabras clave: Nonlinear systems , Iterative method , Banach space , Recurrence relations , Semilocal convergence , R-order
Derechos de uso: Reserva de todos los derechos
Fuente:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-013-9795-7
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11075-013-9795-7
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/
info:eu-repo/grantAgreement/UPV//SP20120498/
Agradecimientos:
This work has been supported by Ministerio de Ciencia e Innovaci´on MTM2011-28636-C02-02 and by Vicerrectorado de Investigaci´on. Universitat Polit`ecnica de Val`encia PAID-SP-2012-0498
Tipo: Artículo

References

Traub, J.F.: Iterative Methods for the Solution of Nonlinear Equations. Prentice Hall, New York (1964)

Kantorovich, L.V.: On the newton method for functional equations. Doklady Akademii Nauk SSSR 59, 1237–1240 (1948)

Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, I: The Halley method. Computing 44, 169–184 (1990) [+]
Traub, J.F.: Iterative Methods for the Solution of Nonlinear Equations. Prentice Hall, New York (1964)

Kantorovich, L.V.: On the newton method for functional equations. Doklady Akademii Nauk SSSR 59, 1237–1240 (1948)

Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, I: The Halley method. Computing 44, 169–184 (1990)

Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, II: The Chebyshev method. Computing 45, 355–367 (1990)

Hernández, M.A.: Reduced recurrence relations for the Chebyshev method. J. Optim. Theory Appl. 98, 385–397 (1998)

Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for super-Halley method. J. Comput. Math. Appl. 7, 1–8 (1998)

Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-like methods. Appl. Math. Optim. 41, 227–236 (2000)

Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)

Argyros, I., K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev Secant-type methods. J. Comput. Appl. Math. 235–10, 3195–3206 (2011)

Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newtons method. J. Complex. 28(3), 364–387 (2012)

Wang, X., Gu, C., Kou, J.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algoritm. 54, 497–516 (2011)

Kou, J., Li, Y., Wang, X.: A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007)

Zheng, L., Gu, C.: Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algoritm. 59, 623–638 (2012)

Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)

Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algoritm. 57, 441–456 (2011)

Hernández, M.A.: The newton method for operators with hlder continuous first derivative. J. Optim. Appl. 109, 631–648 (2001)

Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Hlder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006)

Zhao, Y., Wu, Q.: Newton-Kantorovich theorem for a family of modified Halleys method under Hlder continuity conditions in Banach spaces. Appl. Math. Comput. 202, 243–251 (2008)

Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010)

Hueso, J.L., Martínez. E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009)

Taylor, A.Y., Lay, D.: Introduction to Functional Analysis, 2nd edn.New York, Wiley (1980)

Jarrat, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)

Cordero, A., Torregrosa, J.R.: Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem