Mostrar el registro sencillo del ítem
dc.contributor.author | Hueso Pagoaga, José Luís | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.date.accessioned | 2018-03-26T04:07:09Z | |
dc.date.available | 2018-03-26T04:07:09Z | |
dc.date.issued | 2014 | es_ES |
dc.identifier.issn | 1017-1398 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/99723 | |
dc.description.abstract | [EN] In this work, we prove a third and fourth convergence order result for a family of iterative methods for solving nonlinear systems in Banach spaces. We analyze the semilocal convergence by using recurrence relations, giving the existence and uniqueness theorem that establishes the R-order of the method and the priori error bounds. Finally, we apply the methods to two examples in order to illustrate the presented theory. | es_ES |
dc.description.sponsorship | This work has been supported by Ministerio de Ciencia e Innovaci´on MTM2011-28636-C02-02 and by Vicerrectorado de Investigaci´on. Universitat Polit`ecnica de Val`encia PAID-SP-2012-0498 | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear systems | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Banach space | es_ES |
dc.subject | Recurrence relations | es_ES |
dc.subject | Semilocal convergence | es_ES |
dc.subject | R-order | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Semilocal convergence of a family of iterative methods in Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-013-9795-7 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120498/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hueso Pagoaga, JL.; Martínez Molada, E. (2014). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms. 67(2):365-384. https://doi.org/10.1007/s11075-013-9795-7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11075-013-9795-7 | es_ES |
dc.description.upvformatpinicio | 365 | es_ES |
dc.description.upvformatpfin | 384 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 67 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\281819 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Traub, J.F.: Iterative Methods for the Solution of Nonlinear Equations. Prentice Hall, New York (1964) | es_ES |
dc.description.references | Kantorovich, L.V.: On the newton method for functional equations. Doklady Akademii Nauk SSSR 59, 1237–1240 (1948) | es_ES |
dc.description.references | Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, I: The Halley method. Computing 44, 169–184 (1990) | es_ES |
dc.description.references | Candela, V., Marquina, A.: Recurrence relations for rational cubic methods, II: The Chebyshev method. Computing 45, 355–367 (1990) | es_ES |
dc.description.references | Hernández, M.A.: Reduced recurrence relations for the Chebyshev method. J. Optim. Theory Appl. 98, 385–397 (1998) | es_ES |
dc.description.references | Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for super-Halley method. J. Comput. Math. Appl. 7, 1–8 (1998) | es_ES |
dc.description.references | Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-like methods. Appl. Math. Optim. 41, 227–236 (2000) | es_ES |
dc.description.references | Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009) | es_ES |
dc.description.references | Argyros, I., K., Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Hilout, S.: On the semilocal convergence of efficient Chebyshev Secant-type methods. J. Comput. Appl. Math. 235–10, 3195–3206 (2011) | es_ES |
dc.description.references | Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newtons method. J. Complex. 28(3), 364–387 (2012) | es_ES |
dc.description.references | Wang, X., Gu, C., Kou, J.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algoritm. 54, 497–516 (2011) | es_ES |
dc.description.references | Kou, J., Li, Y., Wang, X.: A variant of super Halley method with accelerated fourth-order convergence. Appl. Math. Comput. 186, 535–539 (2007) | es_ES |
dc.description.references | Zheng, L., Gu, C.: Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces. Numer. Algoritm. 59, 623–638 (2012) | es_ES |
dc.description.references | Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshevs iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008) | es_ES |
dc.description.references | Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algoritm. 57, 441–456 (2011) | es_ES |
dc.description.references | Hernández, M.A.: The newton method for operators with hlder continuous first derivative. J. Optim. Appl. 109, 631–648 (2001) | es_ES |
dc.description.references | Ye, X., Li, C.: Convergence of the family of the deformed Euler-Halley iterations under the Hlder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006) | es_ES |
dc.description.references | Zhao, Y., Wu, Q.: Newton-Kantorovich theorem for a family of modified Halleys method under Hlder continuity conditions in Banach spaces. Appl. Math. Comput. 202, 243–251 (2008) | es_ES |
dc.description.references | Argyros, I.K.: Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26, 316–333 (2010) | es_ES |
dc.description.references | Hueso, J.L., Martínez. E., Torregrosa, J.R.: Third and fourth order iterative methods free from second derivative for nonlinear systems. Appl. Math. Comput. 211, 190–197 (2009) | es_ES |
dc.description.references | Taylor, A.Y., Lay, D.: Introduction to Functional Analysis, 2nd edn.New York, Wiley (1980) | es_ES |
dc.description.references | Jarrat, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966) | es_ES |
dc.description.references | Cordero, A., Torregrosa, J.R.: Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) | es_ES |