Mostrar el registro sencillo del ítem
dc.contributor.author | Bès, Juan Pablo | es_ES |
dc.contributor.author | Menet, Quentin | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.contributor.author | Puig-De Dios, Yunied | es_ES |
dc.date.accessioned | 2018-03-26T06:28:23Z | |
dc.date.available | 2018-03-26T06:28:23Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0025-5831 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/99749 | |
dc.description.abstract | [EN] We generalize the notions of hypercyclic operators, U-frequently hypercyclic operators and frequently hypercyclic operators by introducing a new concept in linear dynamics, namely A-hypercyclicity. We then state an A-hypercyclicity criterion, inspired by the hypercyclicity criterion and the frequent hypercyclicity criterion, and we show that this criterion characterizes the A-hypercyclicity for weighted shifts. We also investigate which density properties can the sets N(x, U) = {n is an element of N; T-n x is an element of U} have for a given hypercyclic operator, and we study the new notion of reiteratively hypercyclic operators. | es_ES |
dc.description.sponsorship | This work is supported in part by MEC and FEDER, Project MTM2013-47093-P, and by GVA, Projects PROMETEOII/2013/013 and ACOMP/2015/005. The second author was a postdoctoral researcher of the Belgian FNRS. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mathematische Annalen | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hypercyclic operators | es_ES |
dc.subject | Recurrence | es_ES |
dc.subject | Chaos | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Recurrence properties of hypercyclic operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00208-015-1336-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F005/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bès, JP.; Menet, Q.; Peris Manguillot, A.; Puig-De Dios, Y. (2016). Recurrence properties of hypercyclic operators. Mathematische Annalen. 366(1):545-572. https://doi.org/10.1007/s00208-015-1336-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00208-015-1336-3 | es_ES |
dc.description.upvformatpinicio | 545 | es_ES |
dc.description.upvformatpfin | 572 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 366 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\334179 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Badea, C., Grivaux, S.: Unimodular eigenvalues, uniformly distributed sequences and linear dynamics. Adv. Math. 211, 766–793 (2007) | es_ES |
dc.description.references | Bayart, F., Grivaux, S.: Frequently hypercyclic operators. Trans. Amer. Math. Soc. 358, 5083–5117 (2006) | es_ES |
dc.description.references | Bayart, F., Grivaux, S.: Invariant Gaussian measures for operators on Banach spaces and linear dynamics. Proc. Lond. Math. Soc. 94, 181–210 (2007) | es_ES |
dc.description.references | Bayart, F., Matheron, É.: Dynamics of linear operators, Cambridge Tracts in Mathematics, 179. Cambridge University Press, Cambridge (2009) | es_ES |
dc.description.references | Bayart, F., Matheron, É.: (Non-)weakly mixing operators and hypercyclicity sets. Ann. Inst. Fourier 59, 1–35 (2009) | es_ES |
dc.description.references | Bayart, F., Ruzsa, I.: Difference sets and frequently hypercyclic weighted shifts. Ergodic Theory Dynam. Syst. 35, 691–709 (2015) | es_ES |
dc.description.references | Bergelson, V.: Ergodic Ramsey Theory- an update, Ergodic Theory of $$\mathbb{Z}^d$$ Z d -actions. Lond. Math. Soc. Lecture Note Ser. 28, 1–61 (1996) | es_ES |
dc.description.references | Bernal-González, L., Grosse-Erdmann, K.-G.: The Hypercyclicity Criterion for sequences of operators. Studia Math. 157, 17–32 (2003) | es_ES |
dc.description.references | Bès, J., Peris, A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999) | es_ES |
dc.description.references | Bonilla, A., Grosse-Erdmann, K.-G.: Frequently hypercyclic operators and vectors. Ergodic Theory Dynam. Syst. 27, 383–404 (2007) | es_ES |
dc.description.references | Bonilla, A., Grosse-Erdmann, K.-G.: Erratum: Ergodic Theory Dynam. Systems 29, 1993–1994 (2009) | es_ES |
dc.description.references | Chan, K., Seceleanu, I.: Hypercyclicity of shifts as a zero-one law of orbital limit points. J. Oper. Theory 67, 257–277 (2012) | es_ES |
dc.description.references | Costakis, G., Sambarino, M.: Topologically mixing hypercyclic operators. Proc. Amer. Math. Soc. 132, 385–389 (2004) | es_ES |
dc.description.references | Furstenberg, H.: Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton (1981) | es_ES |
dc.description.references | Giuliano, R., Grekos, G., Mišík, L.: Open problems on densities II, Diophantine Analysis and Related Fields 2010. AIP Conf. Proc. 1264, 114–128 (2010) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139, 47–68 (2000) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G., Peris, A.: Frequently dense orbits. C. R. Math. Acad. Sci. Paris 341, 123–128 (2005) | es_ES |
dc.description.references | Grosse-Erdmann, K.G., Peris, A.: Weakly mixing operators on topological vector spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 104, 413–426 (2010) | es_ES |
dc.description.references | Grosse-Erdmann, K.G., Peris Manguillot, A.: Linear chaos, Universitext. Springer, London (2011) | es_ES |
dc.description.references | Menet, Q.: Linear chaos and frequent hypercyclicity. Trans. Amer. Math. Soc. arXiv:1410.7173 | es_ES |
dc.description.references | Puig, Y.: Linear dynamics and recurrence properties defined via essential idempotents of $$\beta {\mathbb{N}}$$ β N (2014) arXiv:1411.7729 (preprint) | es_ES |
dc.description.references | Salas, H.N.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995) | es_ES |
dc.description.references | Salat, T., Toma, V.: A classical Olivier’s theorem and statistical convergence. Ann. Math. Blaise Pascal 10, 305–313 (2003) | es_ES |
dc.description.references | Shkarin, S.: On the spectrum of frequently hypercyclic operators. Proc. Am. Math. Soc. 137, 123–134 (2009) | es_ES |