- -

The liquid penetration of diesel substitutes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The liquid penetration of diesel substitutes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Riess, Sebastian es_ES
dc.contributor.author Weiss, Lukas es_ES
dc.contributor.author Rezaei, Javad es_ES
dc.contributor.author Peter, Andreas es_ES
dc.contributor.author Wensing, Michael es_ES
dc.date.accessioned 2018-03-29T10:31:02Z
dc.date.available 2018-03-29T10:31:02Z
dc.date.issued 2017-07-28
dc.identifier.isbn 9788490485804
dc.identifier.uri http://hdl.handle.net/10251/99932
dc.description.abstract [EN] Diesel fuel consist of several hundreds of substances on organic basis. Experimental and numerical investigations of this multicomponent fuel are hard to interpret in detail, since the behavior of the multicomponent mixture is complex. Physical and chemical data of this system is not available under engine relevant conditions. Instead, fundamental research substitutes diesel with pure substances, where a big database exists. Prior work already showed, that overall spray propagation (including vapor phase) is nearly independent on the injected fuel. This is due to the high air entrainment at present diesel engine conditions (very high injection pressure and dense ambient atmosphere). The high air entrainment shortly behind the nozzle exit (within the first 5 mm penetration) creates a situation where properties of the ambient gas dominate the spray propagation resulting in similar mass and momentum distributions even for different fuels, if the injection conditions are kept constant. On the other hand, the liquid length is clearly different for different fuels, so that location and time of the phase change differ with consequences on the time available for mixture formation in the gas phase. The paper describes the liquid length as a function of the enthalpy necessary for the phase transition (given by the fuel and fuel temperature at injection) and the injection conditions (ambient gas properties, injector design and injection pressure). We compare two different models describing the enthalpy balance. Siebers et al. presented “Model I”, where mass transfer dominates the enthalpy transfer and evaporation takes place. In our own “Model II” evaporation is suppressed, resulting in a heat transfer driven enthalpy transfer without mass transport. The calculations are validated with experimental data. The liquid length is optically accessible by Mie-Scattering imaging techniques, the complete spray evolution by Schlieren technique. The experimental study was carried out in the high-pressure combustion vessel “OptiVeP” at FAU. The data shown in this paper derived from measurements with dodecane injected at 1200 bar into 613 K ambient. The ambient pressure varies from 1 – 10 MPa. A Continental research injector with a 115 µm hole and L/D of 6.5 was used. Nitrogen atmosphere suppressed ignition. Increasing the ambient pressure leads to a change in the mechanism in phase transition. It switches from a mass transfer dominated regime to a heat transfer dominated regime at high ambient pressures. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Diesel es_ES
dc.subject Liquid-penetration es_ES
dc.subject Enthalpy es_ES
dc.title The liquid penetration of diesel substitutes es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/ILASS2017.2017.4764
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/675528/EU/Effect of 4500bar injection pressure and super-critical phase change of surrogate and real-world fuels enriched with additives and powering Diesel engines on soot emissions reduction/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Riess, S.; Weiss, L.; Rezaei, J.; Peter, A.; Wensing, M. (2017). The liquid penetration of diesel substitutes. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 1060-113. https://doi.org/10.4995/ILASS2017.2017.4764 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems es_ES
dc.relation.conferencedate September 06-08,2017 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/ILASS/ILASS2017/paper/view/4764 es_ES
dc.description.upvformatpinicio 1060 es_ES
dc.description.upvformatpfin 113 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\4764 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem