Matusik, K.; Duke, D.; Sovis, N.; Swantek, A.; Powell, C.; Payri, R.; Vaquerizo, D.... (2017). A study on the relationship between internal nozzle geometry and injected mass distribution of eight ECN Spray G nozzles. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 313-320. https://doi.org/10.4995/ILASS2017.2017.4766
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/101587
Título:
|
A study on the relationship between internal nozzle geometry and injected mass distribution of eight ECN Spray G nozzles
|
Autor:
|
Matusik, Katarzyna
Duke, Daniel
Sovis, Nicholas
Swantek, Andrew
Powell, Christopher
Payri, Raul
Vaquerizo, Daniel
Giraldo Valderrama, Jhoan Sebastián
Kastengren, Alan
|
Entidad UPV:
|
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Instituto Universitario CMT-Motores Térmicos - Institut Universitari CMT-Motors Tèrmics
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
|
Fecha difusión:
|
|
Resumen:
|
[EN] Gasoline direct injection (GDI) nozzles are manufactured to meet geometric specifications with length scales on
the order of a few hundred microns. The machining tolerances of these nominal dimensions are not always ...[+]
[EN] Gasoline direct injection (GDI) nozzles are manufactured to meet geometric specifications with length scales on
the order of a few hundred microns. The machining tolerances of these nominal dimensions are not always known
due to the difficulty in accurately measuring such small length scales in a nonintrusive fashion. To gain insight into
the variability of the machined dimensions as well as any effects that this variability may have on the fuel spray
behavior, a series of measurements of the internal geometry and fuel mass distribution were performed on a set of
eight nominally duplicate GDI “Spray G” nozzles provided by the Engine Combustion Network. The key dimensions
of each of the eight nozzle holes were measured with micron resolution using full spectrum x-ray tomographic
imaging at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. Fuel density
distributions at 2 mm downstream of the nozzle tips were obtained by performing x-ray radiography measurements
for many lines of sight. The density measurements reveal nozzle-to-nozzle as well as hole-to-hole density variations.
The combination of high-resolution geometry and fuel distribution datasets allows spray phenomena to be linked to
specific geometric characteristics of the nozzle, such as variability in the hole lengths and counterbore diameters,
and the hole inlet corner radii. This analysis provides important insight into which geometrical characteristics of
the nozzles may have the greatest importance in the development of the injected sprays, and to what degree
these geometric variations might account for the total spray variability. The goal of this work is then to further the
understanding of the relationship between internal nozzle geometry and fuel injection, provide input to improve
computational models, and ultimately aid in optimizing injector design for higher fuel efficiency and lower emissions
engines.
[-]
|
Palabras clave:
|
GDI
,
Nozzle geometry
,
Fuel spray density
,
Fuel injector
,
DISI
,
Spray G
,
ECN
,
Gasoline
|
Derechos de uso:
|
Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
|
ISBN:
|
9788490485804
|
Fuente:
|
Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems.
|
DOI:
|
10.4995/ILASS2017.2017.4766
|
Editorial:
|
Editorial Universitat Politècnica de València
|
Versión del editor:
|
http://ocs.editorial.upv.es/index.php/ILASS/ILASS2017/paper/view/4766
|
Título del congreso:
|
ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems
|
Lugar del congreso:
|
Valencia, Spain
|
Fecha congreso:
|
September 06-08,2017
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/
|
Agradecimientos:
|
This research was performed at the 7-BM beamline of the APS at Argonne National Laboratory. Use of the APS
is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. We gratefully
acknowledge ...[+]
This research was performed at the 7-BM beamline of the APS at Argonne National Laboratory. Use of the APS
is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-06CH11357. We gratefully
acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. We thank Dr. Doga Gürsoy for the use of TomoPy and corresponding user support, as well as Dr. Xianghui Xiao at the APS 2-BM beamline for technical guidance in performing x-ray tomography. Argonne’s x-ray fuel injection research is sponsored by the DOE Vehicle Technologies Program under the direction of Gurpreet Singh and Leo Breton.
[-]
|
Tipo:
|
Capítulo de libro
Comunicación en congreso
|