- -

A two-parameter design storm for Mediterranean convective rainfall

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A two-parameter design storm for Mediterranean convective rainfall

Mostrar el registro completo del ítem

García Bartual, RL.; Andrés Doménech, I. (2017). A two-parameter design storm for Mediterranean convective rainfall. HYDROLOGY AND EARTH SYSTEM SCIENCES. 21(5):2377-2387. https://doi.org/10.5194/hess-21-2377-2017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/104444

Ficheros en el ítem

Metadatos del ítem

Título: A two-parameter design storm for Mediterranean convective rainfall
Autor: García Bartual, Rafael Luis Andrés Doménech, Ignacio
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The following research explores the feasibility of building effective design storms for extreme hydrological regimes, such as the one which characterizes the rainfall regime of the east and south-east of the Iberian ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
HYDROLOGY AND EARTH SYSTEM SCIENCES. (issn: 1027-5606 )
DOI: 10.5194/hess-21-2377-2017
Editorial:
EUROPEAN GEOSCIENCES UNION, MAX-PLANCK-STR 13, KATLENBURG-LINDAU, GERMANY, 37191
Versión del editor: http://doi.org/10.5194/hess-21-2377-2017
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2015%2F064/
Agradecimientos:
This work was supported by the Regional Government of Valencia (Generalitat Valenciana, Conselleria d'Educacio, Investigacio, Cultura i Esport) through the project "Formulacion de un hietograma sintetico con reproduccion ...[+]
Tipo: Artículo

References

Adams, B. J. and Howard, C. D. D.: Design Storm Pathology, Can. Water Resour. J., 11, 49–55, https://doi.org/10.4296/cwrj1103049, 1986.

Alfieri, L., Laio, F., and Claps, P.: A simulation experiment for optimal design hyetograph selection, Hydrol. Process., 22, 813–820, https://doi.org/10.1002/hyp.6646, 2008.

Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, 2010. [+]
Adams, B. J. and Howard, C. D. D.: Design Storm Pathology, Can. Water Resour. J., 11, 49–55, https://doi.org/10.4296/cwrj1103049, 1986.

Alfieri, L., Laio, F., and Claps, P.: A simulation experiment for optimal design hyetograph selection, Hydrol. Process., 22, 813–820, https://doi.org/10.1002/hyp.6646, 2008.

Andrés-Doménech, I., Montanari, A., and Marco, J. B.: Stochastic rainfall analysis for storm tank performance evaluation, Hydrol. Earth Syst. Sci., 14, 1221–1232, https://doi.org/10.5194/hess-14-1221-2010, 2010.

Andrés-Doménech, I., García-Bartual, R., Rico Cortés, M., and Albentosa Hernández, E.: A Gaussian design-storm for Mediterranean convective events. Sustainable Hydraulics in the Era of Global Change, edited by: Erpicum, S., Dewals, B., Archambeau, P., and Pirotton, M., Taylor & Francis, London, ISBN 978-1-138-02977-4, 2016.

Ball, J. E.: The influence of storm temporal patterns on catchment response, J. Hydrol., 158, 285–303, 1994.

Barnolas, M., Rigo, T., and Llasat, M. C.: Characteristics of 2-D convective structures in Catalonia (NE Spain): an analysis using radar data and GIS, Hydrol. Earth Syst. Sci., 14, 129–139, https://doi.org/10.5194/hess-14-129-2010, 2010.

Bonta, J. V. and Rao, R.: Factors affecting the identification of independent storm events, J. Hydrol., 98, 275–293, 1988.

Brummer, J.: Rainfall events as paths of a stochastic process: Problems of design storm analysis, Water Sci. Technol., 16, 131–138, 1984.

Capsoni, C., Luini, L., Paraboni, A., Riva, C., and Martellucci A.: A new prediction model of rain attenuation that separately accounts for stratiform and convective rain, IEEE T. Antenn. Propag., 57, 196–204, 2009.

Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, Mc Graw-Hill, New York, 1988.

De Luca, D. L.: Analysis and modelling of rainfall fields at different resolutions in southern Italy, Hydrolog. Sci. J., 59, 1536–1558, https://doi.org/10.1080/02626667.2014.926013, 2014.

Di Baldassarre, G., Brath, A., and Montanari, A.: Reliability of different depth-duration-frequency equations for estimating short-duration design storms, Water Resour. Res., 42, W12501, https://doi.org/10.1029/2006WR004911, 2006.

Dunkerley, D.: Identifying individual rain events from pluviography records: a review with analysis of data from an Australian dryland site, Hydrol. Process., 22, 5024–5036, 2008.

Frances, F., García-Bartual, R., and Bussi, G.: High return period annual maximum reservoir water level quantiles estimation using synthetic generated flood events, in: “Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management”, Taylor and Francis, ISBN 978-0-415-62078-9, 185–190, 2012.

French, R. and Jones, M.: Design rainfall temporal patterns in Australian Rainfall and Runoff: Durations exceeding one hour, Australian Journal of Water Resources, 16, 21–27, 2012.

Froehlich, D. C.: Mathematical formulations of NRCS 24-hour design storms, J. Irrig. Drain E.-ASCE, 135, 241–247, https://doi.org/10.1061/(ASCE)0733-9437(2009)135:2(241), 2009.

García-Bartual, R. and Marco, J.: A stochastic model of the internal structure of convective precipitation in time at a raingauge site, J. Hydrol., 118, 129–142, https://doi.org/10.1016/0022-1694(90)90254-U, 1990.

García-Bartual, R. and Schneider, M.: Estimating maximum expected short-duration rainfall intensities from extreme convective storms, Phys. Chem. Earth Pt. B, 26, 675–681, https://doi.org/10.1016/S1464-1909(01)00068-5, 2001.

Hicks, W. I.: A method of computing urban runoff, T. Am. Soc. Civ. Eng., 109, 1217–1253, 1944.

Hogg, W. D.: Time distribution of short duration rainfall in Canada, in: Proceedings Canadian Hydrology Symposium, 80, Ottawa, Ontario, 53–63, 1980.

Hogg, W. D.: Distribution of design rainfall with time: design considerations. American Geophysical Union Chapman on Rainfall Rates, Urbana, Illinois, 27–29 April 1982.

Hoppe, H.: Impact of input data uncertainties on urban drainage models: climate change – a crucial issue? In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September, 10 pp., 2008.

Huff, F. A.: Time distribution of rainfall in heavy storms, Water Resour. Res., 3, 1007–1019, https://doi.org/10.1029/WR003i004p01007, 1967.

Huff, F. A. and Angel, J. R.: Rainfall Distributions and Hydroclimatic Characteristics of Heavy Rainstorms in Illinois (Bulletin 70), Illinois State Water Survey, 1989.

Keifer, C. J. and Chu, H. H.: Synthetic storm pattern for drainage design, J. Hydraul. Eng-ASCE, 83, 1–25, 1957.

Kuichling, E.: The relation between rainfall and the discharge in sewers in populous districts, T. Am. Soc. Civ. Eng., 20, 37–40, 1889.

Llasat, M. C.: . An objective classification of rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of Spain, Int. J. Climatol., 21, 1385–1400, 2001.

McCuen, R. H.: Hydrologic analysis and design, Prentice-Hall, Englewood Cliffs, N. J., 1989.

McPherson, M. B.: Urban runoff control planning, EPA-600/9-78-035, Environmental Protection Agency, Washington D.C., 1978.

Northrop, P. J. and Stone, T. M.: A point process model for rainfall with truncated gaussian rain cells. Research Report No. 251, Department of Statistical Science, University College London, 2005.

Packman, J. C. and Kidd, C. H. R.: A logical approach to the design storm concept, Water Resour. Res., 16, 994–1000, https://doi.org/10.1029/WR016i006p00994, 1980.

Pilgrim, D. H.: Australian rainfall and runoff, a guide to flood estimation. The Institution of Engineers, ACT, Australia, 1987.

Pilgrim, D. H. and Cordery, I.: Rainfall temporal patterns for design floods, J. Hydr. Eng. Div.-ASCE, 101, 81–95, 1975.

Restrepo-Posada, P. J. and Eagleson, P. S.: Identification of independent rainstorms, J. Hydrol., 55, 303–319, 1982.

Rigo, T. and Llasat, M. C.: Radar analysis of the life cycle of Mesoscale Convective Systems during the 10 June 2000 event, Nat. Hazards Earth Syst. Sci., 5, 959–970, https://doi.org/10.5194/nhess-5-959-2005, 2005.

Salsón, S. and Garcia-Bartual, R.: A space-time rainfall generator for highly convective Mediterranean rainstorms, Nat. Hazards Earth Syst. Sci., 3, 103–114, https://doi.org/10.5194/nhess-3-103-2003, 2003.

Témez, J.: Cálculo Hidrometeorológico de caudales máximos en pequeñas cuencas naturales, Dirección General de Carreteras, Madrid, España, 1978.

Vaskova, I.: Cálculo de las curvas IDF mediante la incorporación de las propiedades de escala y de dependencia temporales, PhD Thesis, Universitat Politècnica de València, 2001 (in Spanish).

Walesh, S. G., Lau, D. H., and Liebman, M. D.: Statistically based use of event models. Proceedings of the International Symposium on Urban Storm Runoff, University of Kentucky, Lexington, 75–81, 1979.

Watt, E. and Marsalek, J.: Critical review of the evolution of design storm event concept, Can. J. Civil. Eng., 40, 105–113, https://doi.org/10.1139/cjce-2011-0594, 2013.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem