Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández-Martínez, Carlos Alberto | es_ES |
dc.contributor.author | Treviño-Cabrera, Griselda Fabiola | es_ES |
dc.contributor.author | Hernández-Luna, Carlos Eduardo | es_ES |
dc.contributor.author | Silva-Vázquez, Ramón | es_ES |
dc.contributor.author | Hume, Michael E. | es_ES |
dc.contributor.author | Gutiérrez-Soto, Guadalupe | es_ES |
dc.contributor.author | Méndez-Zamora, Gerardo | es_ES |
dc.date.accessioned | 2018-07-03T06:44:24Z | |
dc.date.available | 2018-07-03T06:44:24Z | |
dc.date.issued | 2018-06-28 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/105083 | |
dc.description.abstract | [EN] The effect of sorghum hydrolysed by Trametes maxima CU1 and Pycnoporus sanguineus CS2 was evaluated on growth performance traits and rabbit meat quality. A total of 24 unsexed New Zealand rabbits, weaned at 20 d of age, were allocated to 2 treatments: T1 (diet including 300 g/kg of non-hydrolysed sorghum) and T2 (diet including 300 g/kg of hydrolysed sorghum by Trametes maxima CU1 and Pycnoporus sanguineus CS2). Rabbits of group T2 did not have significantly different (P>0.05) feed intake compared to those in T1. Carcass traits were also not significantly different (P>0.05) between the 2 groups. The pH, water-holding capacity, colour and cooking loss of the longissimus lumborum were not different (P>0.05) between treatments, whereas the pH of the rabbits biceps femoris was higher in T2 (6.21; P<0.05) than in T1 (6.14). Meat hardness and gumminess in T2 were lower (P<0.05) in comparison to meat from T1. Thus, sorghum hydrolysed by Trametes maxima CU1 and Pycnoporus sanguineus CS2 contributed to a better rabbit meat texture. | es_ES |
dc.description.sponsorship | The authors are grateful for the financial support provided by the Programa de Apoyo a la Investigación Cientifica y Tecnológica de la UANL (CT268Q15). This research was supported by Facultad de Agronomía, Universidad Autónoma de Nuevo León, principally providing facilities and diet ingredients. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | World Rabbit Science | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Feed intake | es_ES |
dc.subject | Muscle | es_ES |
dc.subject | Pycnoporus sanguineus CS2 | es_ES |
dc.subject | Texture | es_ES |
dc.subject | Trametes maxima CU1 | es_ES |
dc.subject | Rabbits | es_ES |
dc.title | The effects of hydrolysed sorghum on growth performance and meat quality of rabbits | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2018-06-29T09:57:35Z | |
dc.identifier.doi | 10.4995/wrs.2018.7822 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UANL//CT268Q15/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Hernández-Martínez, CA.; Treviño-Cabrera, GF.; Hernández-Luna, CE.; Silva-Vázquez, R.; Hume, ME.; Gutiérrez-Soto, G.; Méndez-Zamora, G. (2018). The effects of hydrolysed sorghum on growth performance and meat quality of rabbits. World Rabbit Science. 26(2):155-163. https://doi.org/10.4995/wrs.2018.7822 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2018.7822 | es_ES |
dc.description.upvformatpinicio | 155 | es_ES |
dc.description.upvformatpfin | 163 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-8886 | |
dc.contributor.funder | Universidad Autónoma de Nuevo León | |
dc.description.references | Abdel-Aziz N.A., El-Adawy M., Mariezcurrena-Berasain M.A., Salem A.Z., Olivares-Pérez J., Kholif A.E., Borhami B.E. 2015. Effects of exogenous enzymes, Lactobacillus acidophilus or their combination on feed performance response and carcass characteristics of rabbits fed sugarcane bagasse. J. Integr. Agr., 14: 544-549. https://doi.org/10.1016/S2095-3119(14)60827-3 | es_ES |
dc.description.references | Aganga A.A., Tshwenyane S.O. 2003. Feeding values and antinutritive factors of forage tree legumes. Pakistan J. Nutr., 2: 170-177. https://doi.org/10.3923/pjn.2003.170.177 | es_ES |
dc.description.references | Alagón G., Arce O., Serrano P., Ródenas L., Martínez-Paredes E., Cervera C., Pascual J.J., Pascual M. 2015. Effect of feeding diets containing barley, wheat and corn distillers dried grains with solubles on carcass traits and meat quality in growing rabbits. Meat Sci., 101: 56-62. https://doi.org/10.1016/j.meatsci.2014.10.029 | es_ES |
dc.description.references | AOAC. 1998. Official Methods of Analysis. (15th ed.). Association of Official Analytical Chemists, Maryland, USA. | es_ES |
dc.description.references | Ariño B., Hernández P., Blasco A. 2006. Comparison of texture and biochemical characteristics of three rabbit lines selected for litter size or growth rate. Meat Sci., 73: 687-692. https://doi.org/10.1016/j.meatsci.2006.03.014 | es_ES |
dc.description.references | Arora D.S., Sharma R.K. 2010. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem.Biotech., 160: 1760-1788. https://doi.org/10.1007/s12010-009-8676-y | es_ES |
dc.description.references | Baldrian P., Valášková V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev., 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x | es_ES |
dc.description.references | Bourne M.C. 1978. Texture profile analysis. Food Technol., 35: 62-66. | es_ES |
dc.description.references | Brozzoli V., Bartocci S., Terramoccia S., Contò G., Federici F., D'Annibale A., Petruccioli M. 2010. Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed. Enzyme Microb. Tech., 46: 223-228. https://doi.org/10.1016/j.enzmictec.2009.09.008 | es_ES |
dc.description.references | Cachaldora P., Nicodemus N., García J., Carabaño R., De Blas J.C. 2004. Efficacy of Amylofeed® in growing rabbit diets. World Rabbit Sci., 12: 23-31. https://doi.org/10.4995/wrs.2004.583 | es_ES |
dc.description.references | Cardinali R., Cullere M., Dal Bosco A., Mugnai C., Ruggeri S., Mattioli S., Castellini C., Trabalza-Marinucci M., DalleZotte A. 2015. Oregano, rosemary and vitamin E dietary supplementation in growing rabbits: Effect on growth performance, carcass traits, bone development and meat chemical composition. Livest. Sci., 175: 83-89. https://doi.org/10.1016/j.livsci.2015.02.010 | es_ES |
dc.description.references | Casamassima D., Palazzo M., Nardoia M., Longo V., Pozzo L., Vizzarri F. 2016. Dietary effect of fermented wheat powder (Lisosan G®) on productive performance and meat quality in intensively-reared rabbit. Pak. J. Zool., 48: 689-695. | es_ES |
dc.description.references | CIE. 1976. International Commission on Illumination. Colorimetry. Vienna, Austria: Bureau Central de la CIE. Available from: http://www.cie.co.at/. Accessed March 2017. | es_ES |
dc.description.references | Dal Bosco A., Gerencsér Zs., Szendrő Zs., Mugnai C., Cullere M., Kovàcs M., Ruggeri S., Mattioli S., Castellini C., Dalle Zotte A. 2014. Effect of dietary supplementation of spirulina (Arthrospira platensis) and thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci., 96: 114-119. https://doi.org/10.1016/j.meatsci.2013.06.021 | es_ES |
dc.description.references | DalleZotte A., Szendrő K., Gerencsér Zs., Szendrő Zs., Cullere M., Odermatt M., Radnai I., Matics Zs. 2015. Effect of genotype, housing system and hay supplementation on carcass traits and meat quality of growing rabbits. Meat Sci., 110: 126-134. https://doi.org/10.1016/j.meatsci.2015.07.012 | es_ES |
dc.description.references | Elisashvili V., Kachlishvili E. 2009. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144: 37-42. https://doi.org/10.1016/j.jbiotec.2009.06.020 | es_ES |
dc.description.references | Elisashvili V., Kachlishvili E., Penninckx M. 2008. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biot., 35: 1531-1538. | es_ES |
dc.description.references | https://doi.org/10.1007/s10295-008-0454-2 | es_ES |
dc.description.references | Gil M., Ramírez J.A., Pla M., Arino B., Hernández P., Pascual M., Blasco A., Guerrero L., Hajós G., Szerdahelyi E.N., Oliver M.A. 2006. Effect of selection for growth rate on the ageing of myofibrils, meat texture properties and the muscle proteolytic potential of m. longissimus in rabbits. Meat Sci., 72: 121-129. https://doi.org/10.1016/j.meatsci.2005.06.014 | es_ES |
dc.description.references | Gutiérrez-Soto G., Medina-González G.E., Treviño-Ramírez J.E., Hernández-Luna C.E. 2015a. Native macrofungi that produce lignin-modifying enzymes, cellulases, and xylanases with potential biotechnological applications. BioResources, 10: 6676-6689. https://doi.org/10.15376/biores.10.4.6676-6689 | es_ES |
dc.description.references | Gutiérrez-Soto G., Medina-González G.E., García-Zambrano E.A., Treviño-Ramírez J.E., Hernández-Luna C.E. 2015b. Selection and characterization of a native Pycnoporus sanguineus strain as a lignocellulolytic extract producer from submerged cultures of various agroindustrial wastes. BioResources, 10: 3564-3576. https://doi.org/10.15376/biores.10.2.3564-3576 | es_ES |
dc.description.references | Hernández-Luna C.E., Gutiérrez-Soto G., Salcedo-Martínez S.M. 2008. Screening for decolorizing basidiomycetes in Mexico. World J. Microb. Biot., 24:465-473. https://doi.org/10.1007/s11274-007-9495-3 | es_ES |
dc.description.references | INEGI. 2017. Instituto Nacional de Estadística y Geografía e informática. 2013. México en Cifras: Información Nacional por Entidad Federativa y Municipios. Available at: http://www.beta.inegi.org.mx/app/areasgeograficas/. Accessed March 2017. | es_ES |
dc.description.references | Isikhuemhen O.S., Mikiashvili N.A., Adenipekun C.O., Ohimain E.I., Shahbazi G. 2012. The tropical white rot fungus, Lentinus squarrosulus Mont.: lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation. World J. Microb. Biot., 28: 1961-1966. https://doi.org/10.1007/s11274-011-0998-6 | es_ES |
dc.description.references | Kone A.P., Cinq-Mars D., Desjardins Y., Guay F., Gosselin A., Saucier L. 2016. Effects of plant extracts and essential oils as feed supplements on quality and microbial traits of rabbit meat. World Rabbit Sci., 24: 107-119. https://doi.org/10.4995/wrs.2016.3665 | es_ES |
dc.description.references | Maciel M.M., Ribeiro H.C.T. 2010. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Electron. J. Biotech., 13: 14-15. | es_ES |
dc.description.references | https://doi.org/10.2225/vol13-issue6-fulltext-2 | es_ES |
dc.description.references | Meineri G., Cornale P., Tassone S., Peiretti P.G. 2010. Effects of Chia (Salvia hispanica L.) seed supplementation on rabbit meat quality, oxidative stability and sensory traits. Ital. J. Anim. Sci., 9: 45-49. https://doi.org/10.4081/ijas.2010.e10 | es_ES |
dc.description.references | Méndez-Zamora G., Duran-Meléndez L.A., Aquino-López J.L., Santellano-Estrada E., Silva-Vázquez R. 2016. Efecto del aceite de orégano (Poliomintha longiflora Gray) sobre la productividad y calidad de carne de conejos. ERA. 3: 259-265. | es_ES |
dc.description.references | Millati R., Syamsiah S., Niklasson C., Cahyanto M.N., Ludquist K., Taherzadeh M.J. 2011. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources, 6: 5224-5259. | es_ES |
dc.description.references | NOM-033- SAG/ZOO. 2014. Norma Oficial Mexicana. Métodos para dar muerte a los animales domésticos y silvestres. Available at: http://www.economia-noms.gob.mx/noms/consultasAction.do Accessed January 2017. | es_ES |
dc.description.references | NOM-062-ZOO. 1999. Norma Oficial Mexicana, especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio. Available at: http://www.economia-noms.gob.mx/noms/consultasAction.do. Accessed January 2017. | es_ES |
dc.description.references | NRC. 1994. Nutrient Requirements of Poultry National Research Council. National Academy Press, Washington, DC, USA. | es_ES |
dc.description.references | Pascual M., Pla M. 2008. Changes in collagen, texture and sensory properties of meat when selecting rabbits for growth rate. Meat Sci., 78: 375-380. https://doi.org/10.1016/j.meatsci.2007.07.009 | es_ES |
dc.description.references | Rotolo L., Gai F., Nicola S., Zoccarato I., Brugiapaglia A., Gasco L. 2013. Dietary supplementation of oregano and sage dried leaves on performances and meat quality of rabbits. J. Integr. Agr., 12: 1937-1945. | es_ES |
dc.description.references | https://doi.org/10.1016/S2095-3119(13)60631-0 | es_ES |
dc.description.references | Sánchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv., 27: 185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001 | es_ES |
dc.description.references | Sarnklong C., Cone J.W., Pellikaan W., Hendriks W.H. 2010. Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian Austral. J. Anim., 23: 680-692. https://doi.org/10.5713/ajas.2010.80619 | es_ES |
dc.description.references | SAS Institute. 2006. SAS User's Guide. Release 8.2. Cary, NC: SAS Institute Inc. | es_ES |
dc.description.references | Sharma K.K, Shrivastava B., Sastry V.R.B., Sehgal N., Kuhad R.C. 2013. Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Sci. Rep-UK., 3: 1-9. https://doi.org/10.1038/srep01299 | es_ES |
dc.description.references | Shrivastava B., Jain K.K., Kalra A., Kuhad R.C. 2014. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Sci. Rep-UK., 4: 1-9. | es_ES |
dc.description.references | Shrivastava B., Thakur S., Khasa Y.P., Gupte A., Puniya A.K., Kuhad R.C. 2011. White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation, 2: 823-831. | es_ES |
dc.description.references | https://doi.org/10.1007/s10532-010-9408-2 | es_ES |
dc.description.references | Simitzis P.E., Babaliaris C., Charismiadou M.A., Papadomichelakis G., Goliomytis M., Symeon G.K., Deligeorgis S.G. 2014. Effect of hesperidin dietary supplementation on growth performance, carcass traits and meat quality of rabbits. World Rabbit Sci., 22: 113-121. https://doi.org/10.4995/wrs.2014.1760 | es_ES |
dc.description.references | Tanemura N., Akiyoshi Y., Okano K., Sugiura S. 2016. Effects of culturing rapeseed meal, soybean meal, macrophyte meal, and algal meal with three species of white-rot fungi on their in vitro and in vivo digestibilities evaluated using rainbow trout. Aquaculture, 453: 130-134. https://doi.org/10.1016/j.aquaculture.2015.12.001 | es_ES |
dc.description.references | Tsai T.C., Ockerman H.W. 1981. Water binding measurement of meat. J. Food Sci., 6: 697-701. | es_ES |
dc.description.references | https://doi.org/10.1111/j.1365-2621.1981.tb15328.x | es_ES |
dc.description.references | Wang Z., Goonewardene L.A., 2004. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci., 84: 1-11. https://doi.org/10.4141/A03-123 | es_ES |