- -

The effects of hydrolysed sorghum on growth performance and meat quality of rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The effects of hydrolysed sorghum on growth performance and meat quality of rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Martínez, Carlos Alberto es_ES
dc.contributor.author Treviño-Cabrera, Griselda Fabiola es_ES
dc.contributor.author Hernández-Luna, Carlos Eduardo es_ES
dc.contributor.author Silva-Vázquez, Ramón es_ES
dc.contributor.author Hume, Michael E. es_ES
dc.contributor.author Gutiérrez-Soto, Guadalupe es_ES
dc.contributor.author Méndez-Zamora, Gerardo es_ES
dc.date.accessioned 2018-07-03T06:44:24Z
dc.date.available 2018-07-03T06:44:24Z
dc.date.issued 2018-06-28
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/105083
dc.description.abstract [EN] The effect of sorghum hydrolysed by Trametes maxima CU1 and Pycnoporus sanguineus CS2 was evaluated on growth performance traits and rabbit meat quality. A total of 24 unsexed New Zealand rabbits, weaned at 20 d of age, were allocated to 2 treatments: T1 (diet including 300 g/kg of non-hydrolysed sorghum) and T2 (diet including 300 g/kg of hydrolysed sorghum by Trametes maxima CU1 and Pycnoporus sanguineus CS2). Rabbits of group T2 did not have significantly different (P>0.05) feed intake compared to those in T1. Carcass traits were also not significantly different (P>0.05) between the 2 groups. The pH, water-holding capacity, colour and cooking loss of the longissimus lumborum were not different (P>0.05) between treatments, whereas the pH of the rabbits biceps femoris was higher in T2 (6.21; P<0.05) than in T1 (6.14). Meat hardness and gumminess in T2 were lower (P<0.05) in comparison to meat from T1. Thus, sorghum hydrolysed by Trametes maxima CU1 and Pycnoporus sanguineus CS2 contributed to a better rabbit meat texture. es_ES
dc.description.sponsorship The authors are grateful for the financial support provided by the Programa de Apoyo a la Investigación Cientifica y Tecnológica de la UANL (CT268Q15). This research was supported by Facultad de Agronomía, Universidad Autónoma de Nuevo León, principally providing facilities and diet ingredients. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof World Rabbit Science
dc.rights Reserva de todos los derechos es_ES
dc.subject Feed intake es_ES
dc.subject Muscle es_ES
dc.subject Pycnoporus sanguineus CS2 es_ES
dc.subject Texture es_ES
dc.subject Trametes maxima CU1 es_ES
dc.subject Rabbits es_ES
dc.title The effects of hydrolysed sorghum on growth performance and meat quality of rabbits es_ES
dc.type Artículo es_ES
dc.date.updated 2018-06-29T09:57:35Z
dc.identifier.doi 10.4995/wrs.2018.7822
dc.relation.projectID info:eu-repo/grantAgreement/UANL//CT268Q15/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hernández-Martínez, CA.; Treviño-Cabrera, GF.; Hernández-Luna, CE.; Silva-Vázquez, R.; Hume, ME.; Gutiérrez-Soto, G.; Méndez-Zamora, G. (2018). The effects of hydrolysed sorghum on growth performance and meat quality of rabbits. World Rabbit Science. 26(2):155-163. https://doi.org/10.4995/wrs.2018.7822 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2018.7822 es_ES
dc.description.upvformatpinicio 155 es_ES
dc.description.upvformatpfin 163 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26
dc.description.issue 2
dc.identifier.eissn 1989-8886
dc.contributor.funder Universidad Autónoma de Nuevo León
dc.description.references Abdel-Aziz N.A., El-Adawy M., Mariezcurrena-Berasain M.A., Salem A.Z., Olivares-Pérez J., Kholif A.E., Borhami B.E. 2015. Effects of exogenous enzymes, Lactobacillus acidophilus or their combination on feed performance response and carcass characteristics of rabbits fed sugarcane bagasse. J. Integr. Agr., 14: 544-549. https://doi.org/10.1016/S2095-3119(14)60827-3 es_ES
dc.description.references Aganga A.A., Tshwenyane S.O. 2003. Feeding values and antinutritive factors of forage tree legumes. Pakistan J. Nutr., 2: 170-177. https://doi.org/10.3923/pjn.2003.170.177 es_ES
dc.description.references Alagón G., Arce O., Serrano P., Ródenas L., Martínez-Paredes E., Cervera C., Pascual J.J., Pascual M. 2015. Effect of feeding diets containing barley, wheat and corn distillers dried grains with solubles on carcass traits and meat quality in growing rabbits. Meat Sci., 101: 56-62. https://doi.org/10.1016/j.meatsci.2014.10.029 es_ES
dc.description.references AOAC. 1998. Official Methods of Analysis. (15th ed.). Association of Official Analytical Chemists, Maryland, USA. es_ES
dc.description.references Ariño B., Hernández P., Blasco A. 2006. Comparison of texture and biochemical characteristics of three rabbit lines selected for litter size or growth rate. Meat Sci., 73: 687-692. https://doi.org/10.1016/j.meatsci.2006.03.014 es_ES
dc.description.references Arora D.S., Sharma R.K. 2010. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem.Biotech., 160: 1760-1788. https://doi.org/10.1007/s12010-009-8676-y es_ES
dc.description.references Baldrian P., Valášková V. 2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev., 32: 501-521. https://doi.org/10.1111/j.1574-6976.2008.00106.x es_ES
dc.description.references Bourne M.C. 1978. Texture profile analysis. Food Technol., 35: 62-66. es_ES
dc.description.references Brozzoli V., Bartocci S., Terramoccia S., Contò G., Federici F., D'Annibale A., Petruccioli M. 2010. Stoned olive pomace fermentation with Pleurotus species and its evaluation as a possible animal feed. Enzyme Microb. Tech., 46: 223-228. https://doi.org/10.1016/j.enzmictec.2009.09.008 es_ES
dc.description.references Cachaldora P., Nicodemus N., García J., Carabaño R., De Blas J.C. 2004. Efficacy of Amylofeed® in growing rabbit diets. World Rabbit Sci., 12: 23-31. https://doi.org/10.4995/wrs.2004.583 es_ES
dc.description.references Cardinali R., Cullere M., Dal Bosco A., Mugnai C., Ruggeri S., Mattioli S., Castellini C., Trabalza-Marinucci M., DalleZotte A. 2015. Oregano, rosemary and vitamin E dietary supplementation in growing rabbits: Effect on growth performance, carcass traits, bone development and meat chemical composition. Livest. Sci., 175: 83-89. https://doi.org/10.1016/j.livsci.2015.02.010 es_ES
dc.description.references Casamassima D., Palazzo M., Nardoia M., Longo V., Pozzo L., Vizzarri F. 2016. Dietary effect of fermented wheat powder (Lisosan G®) on productive performance and meat quality in intensively-reared rabbit. Pak. J. Zool., 48: 689-695. es_ES
dc.description.references CIE. 1976. International Commission on Illumination. Colorimetry. Vienna, Austria: Bureau Central de la CIE. Available from: http://www.cie.co.at/. Accessed March 2017. es_ES
dc.description.references Dal Bosco A., Gerencsér Zs., Szendrő Zs., Mugnai C., Cullere M., Kovàcs M., Ruggeri S., Mattioli S., Castellini C., Dalle Zotte A. 2014. Effect of dietary supplementation of spirulina (Arthrospira platensis) and thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci., 96: 114-119. https://doi.org/10.1016/j.meatsci.2013.06.021 es_ES
dc.description.references DalleZotte A., Szendrő K., Gerencsér Zs., Szendrő Zs., Cullere M., Odermatt M., Radnai I., Matics Zs. 2015. Effect of genotype, housing system and hay supplementation on carcass traits and meat quality of growing rabbits. Meat Sci., 110: 126-134. https://doi.org/10.1016/j.meatsci.2015.07.012 es_ES
dc.description.references Elisashvili V., Kachlishvili E. 2009. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol., 144: 37-42. https://doi.org/10.1016/j.jbiotec.2009.06.020 es_ES
dc.description.references Elisashvili V., Kachlishvili E., Penninckx M. 2008. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. J. Ind. Microbiol. Biot., 35: 1531-1538. es_ES
dc.description.references https://doi.org/10.1007/s10295-008-0454-2 es_ES
dc.description.references Gil M., Ramírez J.A., Pla M., Arino B., Hernández P., Pascual M., Blasco A., Guerrero L., Hajós G., Szerdahelyi E.N., Oliver M.A. 2006. Effect of selection for growth rate on the ageing of myofibrils, meat texture properties and the muscle proteolytic potential of m. longissimus in rabbits. Meat Sci., 72: 121-129. https://doi.org/10.1016/j.meatsci.2005.06.014 es_ES
dc.description.references Gutiérrez-Soto G., Medina-González G.E., Treviño-Ramírez J.E., Hernández-Luna C.E. 2015a. Native macrofungi that produce lignin-modifying enzymes, cellulases, and xylanases with potential biotechnological applications. BioResources, 10: 6676-6689. https://doi.org/10.15376/biores.10.4.6676-6689 es_ES
dc.description.references Gutiérrez-Soto G., Medina-González G.E., García-Zambrano E.A., Treviño-Ramírez J.E., Hernández-Luna C.E. 2015b. Selection and characterization of a native Pycnoporus sanguineus strain as a lignocellulolytic extract producer from submerged cultures of various agroindustrial wastes. BioResources, 10: 3564-3576. https://doi.org/10.15376/biores.10.2.3564-3576 es_ES
dc.description.references Hernández-Luna C.E., Gutiérrez-Soto G., Salcedo-Martínez S.M. 2008. Screening for decolorizing basidiomycetes in Mexico. World J. Microb. Biot., 24:465-473. https://doi.org/10.1007/s11274-007-9495-3 es_ES
dc.description.references INEGI. 2017. Instituto Nacional de Estadística y Geografía e informática. 2013. México en Cifras: Información Nacional por Entidad Federativa y Municipios. Available at: http://www.beta.inegi.org.mx/app/areasgeograficas/. Accessed March 2017. es_ES
dc.description.references Isikhuemhen O.S., Mikiashvili N.A., Adenipekun C.O., Ohimain E.I., Shahbazi G. 2012. The tropical white rot fungus, Lentinus squarrosulus Mont.: lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation. World J. Microb. Biot., 28: 1961-1966. https://doi.org/10.1007/s11274-011-0998-6 es_ES
dc.description.references Kone A.P., Cinq-Mars D., Desjardins Y., Guay F., Gosselin A., Saucier L. 2016. Effects of plant extracts and essential oils as feed supplements on quality and microbial traits of rabbit meat. World Rabbit Sci., 24: 107-119. https://doi.org/10.4995/wrs.2016.3665 es_ES
dc.description.references Maciel M.M., Ribeiro H.C.T. 2010. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Electron. J. Biotech., 13: 14-15. es_ES
dc.description.references https://doi.org/10.2225/vol13-issue6-fulltext-2 es_ES
dc.description.references Meineri G., Cornale P., Tassone S., Peiretti P.G. 2010. Effects of Chia (Salvia hispanica L.) seed supplementation on rabbit meat quality, oxidative stability and sensory traits. Ital. J. Anim. Sci., 9: 45-49. https://doi.org/10.4081/ijas.2010.e10 es_ES
dc.description.references Méndez-Zamora G., Duran-Meléndez L.A., Aquino-López J.L., Santellano-Estrada E., Silva-Vázquez R. 2016. Efecto del aceite de orégano (Poliomintha longiflora Gray) sobre la productividad y calidad de carne de conejos. ERA. 3: 259-265. es_ES
dc.description.references Millati R., Syamsiah S., Niklasson C., Cahyanto M.N., Ludquist K., Taherzadeh M.J. 2011. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources, 6: 5224-5259. es_ES
dc.description.references NOM-033- SAG/ZOO. 2014. Norma Oficial Mexicana. Métodos para dar muerte a los animales domésticos y silvestres. Available at: http://www.economia-noms.gob.mx/noms/consultasAction.do Accessed January 2017. es_ES
dc.description.references NOM-062-ZOO. 1999. Norma Oficial Mexicana, especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio. Available at: http://www.economia-noms.gob.mx/noms/consultasAction.do. Accessed January 2017. es_ES
dc.description.references NRC. 1994. Nutrient Requirements of Poultry National Research Council. National Academy Press, Washington, DC, USA. es_ES
dc.description.references Pascual M., Pla M. 2008. Changes in collagen, texture and sensory properties of meat when selecting rabbits for growth rate. Meat Sci., 78: 375-380. https://doi.org/10.1016/j.meatsci.2007.07.009 es_ES
dc.description.references Rotolo L., Gai F., Nicola S., Zoccarato I., Brugiapaglia A., Gasco L. 2013. Dietary supplementation of oregano and sage dried leaves on performances and meat quality of rabbits. J. Integr. Agr., 12: 1937-1945. es_ES
dc.description.references https://doi.org/10.1016/S2095-3119(13)60631-0 es_ES
dc.description.references Sánchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol. Adv., 27: 185-194. https://doi.org/10.1016/j.biotechadv.2008.11.001 es_ES
dc.description.references Sarnklong C., Cone J.W., Pellikaan W., Hendriks W.H. 2010. Utilization of rice straw and different treatments to improve its feed value for ruminants: a review. Asian Austral. J. Anim., 23: 680-692. https://doi.org/10.5713/ajas.2010.80619 es_ES
dc.description.references SAS Institute. 2006. SAS User's Guide. Release 8.2. Cary, NC: SAS Institute Inc. es_ES
dc.description.references Sharma K.K, Shrivastava B., Sastry V.R.B., Sehgal N., Kuhad R.C. 2013. Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Sci. Rep-UK., 3: 1-9. https://doi.org/10.1038/srep01299 es_ES
dc.description.references Shrivastava B., Jain K.K., Kalra A., Kuhad R.C. 2014. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Sci. Rep-UK., 4: 1-9. es_ES
dc.description.references Shrivastava B., Thakur S., Khasa Y.P., Gupte A., Puniya A.K., Kuhad R.C. 2011. White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation, 2: 823-831. es_ES
dc.description.references https://doi.org/10.1007/s10532-010-9408-2 es_ES
dc.description.references Simitzis P.E., Babaliaris C., Charismiadou M.A., Papadomichelakis G., Goliomytis M., Symeon G.K., Deligeorgis S.G. 2014. Effect of hesperidin dietary supplementation on growth performance, carcass traits and meat quality of rabbits. World Rabbit Sci., 22: 113-121. https://doi.org/10.4995/wrs.2014.1760 es_ES
dc.description.references Tanemura N., Akiyoshi Y., Okano K., Sugiura S. 2016. Effects of culturing rapeseed meal, soybean meal, macrophyte meal, and algal meal with three species of white-rot fungi on their in vitro and in vivo digestibilities evaluated using rainbow trout. Aquaculture, 453: 130-134. https://doi.org/10.1016/j.aquaculture.2015.12.001 es_ES
dc.description.references Tsai T.C., Ockerman H.W. 1981. Water binding measurement of meat. J. Food Sci., 6: 697-701. es_ES
dc.description.references https://doi.org/10.1111/j.1365-2621.1981.tb15328.x es_ES
dc.description.references Wang Z., Goonewardene L.A., 2004. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci., 84: 1-11. https://doi.org/10.4141/A03-123 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem