- -

Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)

Mostrar el registro completo del ítem

Zhao, B.; Chen, Y.; Mu, L.; Hu, S.; Wu, X. (2018). Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus). World Rabbit Science. 26(2):179-190. https://doi.org/10.4995/wrs.2018.7058

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105086

Ficheros en el ítem

Metadatos del ítem

Título: Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)
Autor: Zhao, Bohao Chen, Yang Mu, Lin Hu, Shuaishuai Wu, Xinsheng
Fecha difusión:
Resumen:
[EN] Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We ...[+]
Palabras clave: Rex rabbit , Back skin , Belly skin , miRNA , Transcriptome
Derechos de uso: Reserva de todos los derechos
Fuente:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2018.7058
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/wrs.2018.7058
Código del Proyecto:
info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//16KJB230001/
info:eu-repo/grantAgreement/PAPD//2014-134/
info:eu-repo/grantAgreement/Earmarked Fund for Modern Agro-industry Technology Research System, China//CARS-44-A-1/
Agradecimientos:
This study was supported by the Modern Agricultural Industrial System Special Funding (CARS-44-A-1), the Priority Academic Programme Development of Jiangsu Higher Education Institutions (2014-134) and the General Programme ...[+]
Tipo: Artículo

References

Adamidi C. 2008. Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnol., 26: 407-415. https://doi.org/10.1038/nbt1394

Adijanto J., Castorino J.J., Wang Z.X., Maminishkis A., Grunwald G.B., Philp N.J. 2012. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 287: 20491-

https://doi.org/10.1074/jbc.M112.354761 [+]
Adamidi C. 2008. Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnol., 26: 407-415. https://doi.org/10.1038/nbt1394

Adijanto J., Castorino J.J., Wang Z.X., Maminishkis A., Grunwald G.B., Philp N.J. 2012. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 287: 20491-

https://doi.org/10.1074/jbc.M112.354761

Ahmed M.I., Alam M., Emelianov V.U., Poterlowicz K., Patel A., Sharov A.A., Mardaryev A.N., Botchkareva N.V. 2014. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J. Cell Biol., 207: 549-567. https://doi.org/10.1083/jcb.201404001

Alexander M., Kawahara G., Motohashi N., Casar J., Eisenberg I., Myers J., Gasperini M., Estrella E., Kho A., Mitsuhashi S. 2013. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Diff., 20: 1194-1208. https://doi.org/10.1038/cdd.2013.62

Anders S. 2010. Analysing RNA-Seq data with the DESeq package. Mol. Biol., 43: 1-17.

Andl T., Botchkareva N.V. 2015. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. Exp. Dermatol., 24: 821-826. https://doi.org/10.1111/exd.12785

Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3

Antonini D., Russo MT., De Rosa L., Gorrese M., Del Vecchio L., Missero C. 2010. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J. Invest. Dermatol., 130: 1249-1257. https://doi.org/10.1038/jid.2009.438

Athar M., Tang X., Lee J.L., Kopelovich L., Kim AL. 2006. Hedgehog signalling in skin development and cancer. Exp. Dermatol., 15: 667-677. https://doi.org/10.1111/j.1600-0625.2006.00473.x

Bartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-297.

https://doi.org/10.1016/S0092-8674(04)00045-5

Bashirullah A., Pasquinelli A.E., Kiger A.A., Perrimon N., Ruvkun G., Thummel C.S. 2003. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol., 259: 1-8. https://doi.org/10.1016/S0012-1606(03)00063-0

Bommer GT., Gerin I., Feng Y., Kaczorowski AJ., Kuick R., Love RE., Zhai Y., Giordano TJ., Qin ZS., Moore BB. 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 17: 1298-1307. https://doi.org/10.1016/j.cub.2007.06.068

Braun C.J., Zhang X., Savelyeva I., Wolff S., Moll U.M., Schepeler T., Ørntoft T.F., Andersen C.L., Dobbelstein M. 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res., 68: 10094-10104.

https://doi.org/10.1158/0008-5472.CAN-08-1569

Callis T.E., Chen J.F., Wang D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. Dna Cell Biol., 26: 219-225. https://doi.org/10.1089/dna.2006.0556

Caramuta S., Egyházi S., Rodolfo M., Witten D., Hansson J., Larsson C., Lui W.O. 2010. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol., 130: 2062-2070. https://doi.org/10.1038/jid.2010.63

Chen C.H., Sakai Y., Demay M.B. 2001. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology, 142: 5386-5386. https://doi.org/10.1210/endo.142.12.8650

D'Juan T.F., Shariat N., Park C.Y., Liu H.J., Mavropoulos A., McManus M.T. 2013. Partially penetrant postnatal lethality of an epithelial specific MicroRNA in a mouse knockout. Plos One 8: e76634. https://doi.org/10.1371/journal.pone.0076634

DeYoung M.P., Johannessen C.M., Leong C.O., Faquin W., Rocco J.W., Ellisen L.W. 2006. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res., 66: 9362-9368. https://doi.org/10.1158/0008-5472.CAN-06-1619

Eckert R.L., Welter J.F. 1996. Transcription factor regulation of epidermal keratinocyte gene expression. Mol. Biol. Rep., 23: 59-70. https://doi.org/10.1007/BF00357073

Enright A.J., Bino J., Ulrike G., Thomas T., Chris S., Marks D.S. 2004. MicroRNA targets in Drosophila. Gen. Biol., 5: R1-R1. https://doi.org/10.1186/gb-2003-5-1-r1

Fontanesi L., Scotti E., Allain D., Dall'Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim. Genet., 45: 248-255. https://doi.org/10.1111/age.12104

Fontanesi L., Vargiolu M., Scotti E., Latorre R., Pellegrini M.S.F., Mazzoni M., Asti M., Chiocchetti R., Romeo G., Clavenzani P. 2014. The KIT gene is associated with the English spotting coat color locus and congenital megacolon in Checkered Giant rabbits (Oryctolagus cuniculus). Plos One 9: e93750. https://doi.org/10.1371/journal.pone.0093750

Fuchs E. 2007. Scratching the surface of skin development. Nature, 445: 834-842. https://doi.org/10.1038/nature05659

Georges S.A., Chau B.N., Braun C.J., Zhang X., Dobbelstein M. 2009. Cell cycle arrest or apoptosis by p53: are microRNAs-192/215 and-34 making the decision? Cell Cycle 8: 677-682. https://doi.org/10.4161/cc.8.5.8076

Jackson S.J., Zhang Z., Feng D., Flagg M., O'Loughlin E., Wang D., Stokes N., Fuchs E., Yi R. 2013. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development, 140: 1882-1891. https://doi.org/10.1242/dev.089649

Katoh Y., Katoh M. 2008. Hedgehog signaling, epithelial-tomesenchymal transition and miRNA (review). Int. J. Mol. Med., 22: 271-275. https://doi.org/10.3892/ijmm_00000019

Kim K., Vinayagam A., Perrimon N. 2014. A rapid genomewide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep., 7: 2066-2077. https://doi.org/10.1016/j.celrep.2014.05.025

Kochegarov A., Moses A., Lian W., Meyer J., Hanna M.C., Lemanski L.F. 2013. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci., 20: 1. https://doi.org/10.1186/1423-0127-20-20

Kozomara, A., Griffiths J. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 42: 68-73. https://doi.org/10.1093/nar/gkt1181

Kureel J., Dixit M., Tyagi A., Mansoori M., Srivastava K., Raghuvanshi A., Maurya R., Trivedi R., Goel A., Singh D. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis., 5: e1050. https://doi.org/10.1038/cddis.2014.4

Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357-359. https://doi.org/10.1038/nmeth.1923

Lim X., Nusse R. 2013. Wnt signaling in skin development, homeostasis, and disease. CSH Perspect. Biol., 5: a008029. https://doi.org/10.1101/cshperspect.a008029

Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X., Cai T., Du C., Zhang W., Li J. 2012. Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing. Plos One 7: e50001. https://doi.org/10.1371/journal.pone.0050001

Mardaryev A.N., Ahmed M.I., Vlahov N.V., Fessing M.Y., Gill J.H., Sharov A.A., Botchkareva N.V. 2010. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24: 3869-3881. https://doi.org/10.1096/fj.10-160663

Mills A.A., Zheng B., Wang X.J., Vogel H., Roop D.R., Bradley A. 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398: 708-713. https://doi.org/10.1038/19531

Mueller D.W., Rehli M., Bosserhoff A.K. 2009. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 129: 1740-1751. https://doi.org/10.1038/jid.2008.452

Naeem H., Küffner R., Csaba G., Zimmer R. 2010. miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. Bmc Bioinformatics, 11: 135. https://doi.org/10.1186/1471-2105-11-135

Neilson J.R., Zheng G.X., Burge CB., Sharp P.A. 2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Gene. Dev., 21: 578-589. https://doi.org/10.1101/gad.1522907

Oda Y., Ishikawa M.H., Hawker N.P., Yun Q.C., Bikle D.D. 2007. Differential role of two VDR coactivators, DRIP205 and SRC-3, in keratinocyte proliferation and differentiation. J. Steroid Biochem., 103: 776-780. https://doi.org/10.1016/j.jsbmb.2006.12.069

Pan L., Liu Y., Wei Q., Xiao C., Ji Q., Bao G., Wu X. 2015. Solexa-

Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus). Plos One: 10. https://doi.org/10.1371/journal.pone.0124583

Rosenfield R.L., Deplewski D., Greene M.E. 2001. Peroxisome proliferator-activated receptors and skin development. Horm. Res. Paediat., 54: 269-274. https://doi.org/10.1159/000053270

Schneider M.R. 2012. MicroRNAs as novel players in skin development, homeostasis and disease. Brit. J. Dermatol., 166: 22-28. https://doi.org/10.1111/j.1365-2133.2011.10568.x

Senoo M., Pinto F., Crum C.P., McKeon F. 2007. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129: 523-536. https://doi.org/10.1016/j.cell.2007.02.045

Song B., Wang Y., Kudo K., Gavin E.J., Xi Y., Ju J. 2008. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res., 14: 8080-8086. https://doi.org/10.1158/1078-0432.CCR-08-1422

Suh K.S., Mutoh M., Mutoh T., Li L., Ryscavage A., Crutchley J.M., Dumont R.A., Cheng C., Yuspa S.H. 2007. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J. Cell Sci., 120: 2631-2640. https://doi.org/10.1242/jcs.002741

Tao Y. 2010. Studies on the quality of rex rabbit fur. World Rabbit Sci., 2: 21-24. https://doi.org/10.4995/wrs.1994.213

Tian X., Jiang J., Fan R., Wang H., Meng X., He X., He J., Li H., Geng J., Yu X. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC genomics 13: 1.

https://doi.org/10.1186/1471-2164-13-555

Vadlakonda L., Pasupuleti M., Pallu R. 2014. Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 3: 85. https://doi.org/10.3389/fonc.2013.00085

van Amerongen R., Fuerer C., Mizutani M., Nusse R. 2012. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol., 369: 101-114. https://doi.org/10.1016/j.ydbio.2012.06.020

Vousden K.H., Lane D.P. 2007. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 8: 275-283. https://doi.org/10.1038/nrm2147

Wang P., Li Y., Hong W., Zhen J., Ren J., Li Z., Xu A. 2012. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol. BioSyst., 8: 2924-2931. https://doi.org/10.1039/c2mb25228g

Whelan J.T., Hollis S.E., Cha D.S., Asch A.S., Lee M.H. 2012. Post‐transcriptional regulation of the Ras‐ERK/MAPK signaling pathway. J. Cell Physiol., 227: 1235-1241. https://doi.org/10.1002/jcp.22899

Xia H., Ooi L.L.P.J., Hui K.M. 2013. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology, 58: 629-641. https://doi.org/10.1002/hep.26369

Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398: 714-718. https://doi.org/10.1038/19539

Yu J., Peng H., Ruan Q., Fatima A., Getsios S., Lavker R.M. 2010. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 24: 3950-3959. https://doi.org/10.1096/fj.10-157404

Yu J., Ryan D.G., Getsios S., Oliveira-Fernandes M., Fatima A., Lavker R.M. 2008. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. In Proc.: National Academy of Sciences 105: 19300-19305. https://doi.org/10.1073/pnas.0803992105

Zhang L., Nie Q., Su Y., Xie X., Luo W., Jia X., Zhang X. 2013. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene, 519: 77-81. https://doi.org/10.1016/j.gene.2013.01.043

Zhao Y., Wang P., Meng J., Ji Y., Xu D., Chen T., Fan R., Yu X., Yao J., Dong C. 2015. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a. Int. J. Mol. Sci., 16: 10921-10933. https://doi.org/10.3390/ijms160510921

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem