- -

Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhao, Bohao es_ES
dc.contributor.author Chen, Yang es_ES
dc.contributor.author Mu, Lin es_ES
dc.contributor.author Hu, Shuaishuai es_ES
dc.contributor.author Wu, Xinsheng es_ES
dc.date.accessioned 2018-07-03T06:58:17Z
dc.date.available 2018-07-03T06:58:17Z
dc.date.issued 2018-06-28
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/105086
dc.description.abstract [EN] Skin is an important trait for Rex rabbits and skin development is influenced by many processes, including hair follicle cycling, keratinocyte differentiation and formation of coat colour and skin morphogenesis. We identified differentially expressed microRNAs (miRNAs) between the back and belly skin in Rex rabbits. In total, 211 miRNAs (90 upregulated miRNAs and 121 downregulated miRNAs) were identified with a |log2 (fold change)|>1 and P-value<0.05. Using target gene prediction for the miRNAs, differentially expressed predicted target genes were identified and the functional enrichment and signalling pathways of these target genes were processed to reveal their biological functions. A number of differentially expressed miRNAs were found to be involved in regulation of the cell cycle, skin epithelium differentiation, keratinocyte proliferation, hair follicle development and melanogenesis. In addition, target genes regulated by miRNAs play key roles in the activities of the Hedgehog signalling pathway, Wnt signalling pathway, Osteoclast differentiation and MAPK pathway, revealing mechanisms of skin development. Nine candidate miRNAs and 5 predicted target genes were selected for verification of their expression by quantitative reverse transcription polymerase chain reaction. A regulation network of miRNA and their target genes was constructed by analysing the GO enrichment and signalling pathways. Further studies should be carried out to validate the regulatory relationships between candidate miRNAs and their target genes. es_ES
dc.description.sponsorship This study was supported by the Modern Agricultural Industrial System Special Funding (CARS-44-A-1), the Priority Academic Programme Development of Jiangsu Higher Education Institutions (2014-134) and the General Programme of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (16KJB230001). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof World Rabbit Science
dc.rights Reserva de todos los derechos es_ES
dc.subject Rex rabbit es_ES
dc.subject Back skin es_ES
dc.subject Belly skin es_ES
dc.subject miRNA es_ES
dc.subject Transcriptome es_ES
dc.title Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus) es_ES
dc.type Artículo es_ES
dc.date.updated 2018-06-29T09:57:22Z
dc.identifier.doi 10.4995/wrs.2018.7058
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Jiangsu Province//16KJB230001/
dc.relation.projectID info:eu-repo/grantAgreement/PAPD//2014-134/
dc.relation.projectID info:eu-repo/grantAgreement/Earmarked Fund for Modern Agro-industry Technology Research System, China//CARS-44-A-1/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Zhao, B.; Chen, Y.; Mu, L.; Hu, S.; Wu, X. (2018). Identification and profiling of microRNA between back and belly Skin in Rex rabbits (Oryctolagus cuniculus). World Rabbit Science. 26(2):179-190. https://doi.org/10.4995/wrs.2018.7058 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2018.7058 es_ES
dc.description.upvformatpinicio 179 es_ES
dc.description.upvformatpfin 190 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26
dc.description.issue 2
dc.identifier.eissn 1989-8886
dc.contributor.funder Natural Science Research of Jiangsu Higher Education Institutions of China
dc.contributor.funder Priority Academic Program Development of Jiangsu Higher Education Institutions
dc.contributor.funder Earmarked Fund for Modern Agro-industry Technology Research System, China
dc.contributor.funder Natural Science Foundation of Jiangsu Province es_ES
dc.description.references Adamidi C. 2008. Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnol., 26: 407-415. https://doi.org/10.1038/nbt1394 es_ES
dc.description.references Adijanto J., Castorino J.J., Wang Z.X., Maminishkis A., Grunwald G.B., Philp N.J. 2012. Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression. J. Biol. Chem., 287: 20491- es_ES
dc.description.references https://doi.org/10.1074/jbc.M112.354761 es_ES
dc.description.references Ahmed M.I., Alam M., Emelianov V.U., Poterlowicz K., Patel A., Sharov A.A., Mardaryev A.N., Botchkareva N.V. 2014. MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. J. Cell Biol., 207: 549-567. https://doi.org/10.1083/jcb.201404001 es_ES
dc.description.references Alexander M., Kawahara G., Motohashi N., Casar J., Eisenberg I., Myers J., Gasperini M., Estrella E., Kho A., Mitsuhashi S. 2013. MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death Diff., 20: 1194-1208. https://doi.org/10.1038/cdd.2013.62 es_ES
dc.description.references Anders S. 2010. Analysing RNA-Seq data with the DESeq package. Mol. Biol., 43: 1-17. es_ES
dc.description.references Andl T., Botchkareva N.V. 2015. MicroRNAs (miRNAs) in the control of HF development and cycling: the next frontiers in hair research. Exp. Dermatol., 24: 821-826. https://doi.org/10.1111/exd.12785 es_ES
dc.description.references Andl T., Reddy S.T., Gaddapara T., Millar S.E. 2002. WNT signals are required for the initiation of hair follicle development. Develop. Cell, 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3 es_ES
dc.description.references Antonini D., Russo MT., De Rosa L., Gorrese M., Del Vecchio L., Missero C. 2010. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J. Invest. Dermatol., 130: 1249-1257. https://doi.org/10.1038/jid.2009.438 es_ES
dc.description.references Athar M., Tang X., Lee J.L., Kopelovich L., Kim AL. 2006. Hedgehog signalling in skin development and cancer. Exp. Dermatol., 15: 667-677. https://doi.org/10.1111/j.1600-0625.2006.00473.x es_ES
dc.description.references Bartel D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281-297. es_ES
dc.description.references https://doi.org/10.1016/S0092-8674(04)00045-5 es_ES
dc.description.references Bashirullah A., Pasquinelli A.E., Kiger A.A., Perrimon N., Ruvkun G., Thummel C.S. 2003. Coordinate regulation of small temporal RNAs at the onset of Drosophila metamorphosis. Dev. Biol., 259: 1-8. https://doi.org/10.1016/S0012-1606(03)00063-0 es_ES
dc.description.references Bommer GT., Gerin I., Feng Y., Kaczorowski AJ., Kuick R., Love RE., Zhai Y., Giordano TJ., Qin ZS., Moore BB. 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol., 17: 1298-1307. https://doi.org/10.1016/j.cub.2007.06.068 es_ES
dc.description.references Braun C.J., Zhang X., Savelyeva I., Wolff S., Moll U.M., Schepeler T., Ørntoft T.F., Andersen C.L., Dobbelstein M. 2008. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res., 68: 10094-10104. es_ES
dc.description.references https://doi.org/10.1158/0008-5472.CAN-08-1569 es_ES
dc.description.references Callis T.E., Chen J.F., Wang D.Z. 2007. MicroRNAs in skeletal and cardiac muscle development. Dna Cell Biol., 26: 219-225. https://doi.org/10.1089/dna.2006.0556 es_ES
dc.description.references Caramuta S., Egyházi S., Rodolfo M., Witten D., Hansson J., Larsson C., Lui W.O. 2010. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol., 130: 2062-2070. https://doi.org/10.1038/jid.2010.63 es_ES
dc.description.references Chen C.H., Sakai Y., Demay M.B. 2001. Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology, 142: 5386-5386. https://doi.org/10.1210/endo.142.12.8650 es_ES
dc.description.references D'Juan T.F., Shariat N., Park C.Y., Liu H.J., Mavropoulos A., McManus M.T. 2013. Partially penetrant postnatal lethality of an epithelial specific MicroRNA in a mouse knockout. Plos One 8: e76634. https://doi.org/10.1371/journal.pone.0076634 es_ES
dc.description.references DeYoung M.P., Johannessen C.M., Leong C.O., Faquin W., Rocco J.W., Ellisen L.W. 2006. Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res., 66: 9362-9368. https://doi.org/10.1158/0008-5472.CAN-06-1619 es_ES
dc.description.references Eckert R.L., Welter J.F. 1996. Transcription factor regulation of epidermal keratinocyte gene expression. Mol. Biol. Rep., 23: 59-70. https://doi.org/10.1007/BF00357073 es_ES
dc.description.references Enright A.J., Bino J., Ulrike G., Thomas T., Chris S., Marks D.S. 2004. MicroRNA targets in Drosophila. Gen. Biol., 5: R1-R1. https://doi.org/10.1186/gb-2003-5-1-r1 es_ES
dc.description.references Fontanesi L., Scotti E., Allain D., Dall'Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds. Anim. Genet., 45: 248-255. https://doi.org/10.1111/age.12104 es_ES
dc.description.references Fontanesi L., Vargiolu M., Scotti E., Latorre R., Pellegrini M.S.F., Mazzoni M., Asti M., Chiocchetti R., Romeo G., Clavenzani P. 2014. The KIT gene is associated with the English spotting coat color locus and congenital megacolon in Checkered Giant rabbits (Oryctolagus cuniculus). Plos One 9: e93750. https://doi.org/10.1371/journal.pone.0093750 es_ES
dc.description.references Fuchs E. 2007. Scratching the surface of skin development. Nature, 445: 834-842. https://doi.org/10.1038/nature05659 es_ES
dc.description.references Georges S.A., Chau B.N., Braun C.J., Zhang X., Dobbelstein M. 2009. Cell cycle arrest or apoptosis by p53: are microRNAs-192/215 and-34 making the decision? Cell Cycle 8: 677-682. https://doi.org/10.4161/cc.8.5.8076 es_ES
dc.description.references Jackson S.J., Zhang Z., Feng D., Flagg M., O'Loughlin E., Wang D., Stokes N., Fuchs E., Yi R. 2013. Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal differentiation. Development, 140: 1882-1891. https://doi.org/10.1242/dev.089649 es_ES
dc.description.references Katoh Y., Katoh M. 2008. Hedgehog signaling, epithelial-tomesenchymal transition and miRNA (review). Int. J. Mol. Med., 22: 271-275. https://doi.org/10.3892/ijmm_00000019 es_ES
dc.description.references Kim K., Vinayagam A., Perrimon N. 2014. A rapid genomewide microRNA screen identifies miR-14 as a modulator of Hedgehog signaling. Cell Rep., 7: 2066-2077. https://doi.org/10.1016/j.celrep.2014.05.025 es_ES
dc.description.references Kochegarov A., Moses A., Lian W., Meyer J., Hanna M.C., Lemanski L.F. 2013. A new unique form of microRNA from human heart, microRNA-499c, promotes myofibril formation and rescues cardiac development in mutant axolotl embryos. J. Biomed. Sci., 20: 1. https://doi.org/10.1186/1423-0127-20-20 es_ES
dc.description.references Kozomara, A., Griffiths J. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res., 42: 68-73. https://doi.org/10.1093/nar/gkt1181 es_ES
dc.description.references Kureel J., Dixit M., Tyagi A., Mansoori M., Srivastava K., Raghuvanshi A., Maurya R., Trivedi R., Goel A., Singh D. 2014. miR-542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation. Cell Death Dis., 5: e1050. https://doi.org/10.1038/cddis.2014.4 es_ES
dc.description.references Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9: 357-359. https://doi.org/10.1038/nmeth.1923 es_ES
dc.description.references Lim X., Nusse R. 2013. Wnt signaling in skin development, homeostasis, and disease. CSH Perspect. Biol., 5: a008029. https://doi.org/10.1101/cshperspect.a008029 es_ES
dc.description.references Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X., Cai T., Du C., Zhang W., Li J. 2012. Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing. Plos One 7: e50001. https://doi.org/10.1371/journal.pone.0050001 es_ES
dc.description.references Mardaryev A.N., Ahmed M.I., Vlahov N.V., Fessing M.Y., Gill J.H., Sharov A.A., Botchkareva N.V. 2010. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. FASEB J. 24: 3869-3881. https://doi.org/10.1096/fj.10-160663 es_ES
dc.description.references Mills A.A., Zheng B., Wang X.J., Vogel H., Roop D.R., Bradley A. 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398: 708-713. https://doi.org/10.1038/19531 es_ES
dc.description.references Mueller D.W., Rehli M., Bosserhoff A.K. 2009. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol., 129: 1740-1751. https://doi.org/10.1038/jid.2008.452 es_ES
dc.description.references Naeem H., Küffner R., Csaba G., Zimmer R. 2010. miRSel: Automated extraction of associations between microRNAs and genes from the biomedical literature. Bmc Bioinformatics, 11: 135. https://doi.org/10.1186/1471-2105-11-135 es_ES
dc.description.references Neilson J.R., Zheng G.X., Burge CB., Sharp P.A. 2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Gene. Dev., 21: 578-589. https://doi.org/10.1101/gad.1522907 es_ES
dc.description.references Oda Y., Ishikawa M.H., Hawker N.P., Yun Q.C., Bikle D.D. 2007. Differential role of two VDR coactivators, DRIP205 and SRC-3, in keratinocyte proliferation and differentiation. J. Steroid Biochem., 103: 776-780. https://doi.org/10.1016/j.jsbmb.2006.12.069 es_ES
dc.description.references Pan L., Liu Y., Wei Q., Xiao C., Ji Q., Bao G., Wu X. 2015. Solexa- es_ES
dc.description.references Sequencing Based Transcriptome Study of Plaice Skin Phenotype in Rex Rabbits (Oryctolagus cuniculus). Plos One: 10. https://doi.org/10.1371/journal.pone.0124583 es_ES
dc.description.references Rosenfield R.L., Deplewski D., Greene M.E. 2001. Peroxisome proliferator-activated receptors and skin development. Horm. Res. Paediat., 54: 269-274. https://doi.org/10.1159/000053270 es_ES
dc.description.references Schneider M.R. 2012. MicroRNAs as novel players in skin development, homeostasis and disease. Brit. J. Dermatol., 166: 22-28. https://doi.org/10.1111/j.1365-2133.2011.10568.x es_ES
dc.description.references Senoo M., Pinto F., Crum C.P., McKeon F. 2007. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell, 129: 523-536. https://doi.org/10.1016/j.cell.2007.02.045 es_ES
dc.description.references Song B., Wang Y., Kudo K., Gavin E.J., Xi Y., Ju J. 2008. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin. Cancer Res., 14: 8080-8086. https://doi.org/10.1158/1078-0432.CCR-08-1422 es_ES
dc.description.references Suh K.S., Mutoh M., Mutoh T., Li L., Ryscavage A., Crutchley J.M., Dumont R.A., Cheng C., Yuspa S.H. 2007. CLIC4 mediates and is required for Ca2+-induced keratinocyte differentiation. J. Cell Sci., 120: 2631-2640. https://doi.org/10.1242/jcs.002741 es_ES
dc.description.references Tao Y. 2010. Studies on the quality of rex rabbit fur. World Rabbit Sci., 2: 21-24. https://doi.org/10.4995/wrs.1994.213 es_ES
dc.description.references Tian X., Jiang J., Fan R., Wang H., Meng X., He X., He J., Li H., Geng J., Yu X. 2012. Identification and characterization of microRNAs in white and brown alpaca skin. BMC genomics 13: 1. es_ES
dc.description.references https://doi.org/10.1186/1471-2164-13-555 es_ES
dc.description.references Vadlakonda L., Pasupuleti M., Pallu R. 2014. Role of PI3K-AKTmTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front. Oncol., 3: 85. https://doi.org/10.3389/fonc.2013.00085 es_ES
dc.description.references van Amerongen R., Fuerer C., Mizutani M., Nusse R. 2012. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol., 369: 101-114. https://doi.org/10.1016/j.ydbio.2012.06.020 es_ES
dc.description.references Vousden K.H., Lane D.P. 2007. p53 in health and disease. Nat. Rev. Mol. Cell Biol., 8: 275-283. https://doi.org/10.1038/nrm2147 es_ES
dc.description.references Wang P., Li Y., Hong W., Zhen J., Ren J., Li Z., Xu A. 2012. The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes. Mol. BioSyst., 8: 2924-2931. https://doi.org/10.1039/c2mb25228g es_ES
dc.description.references Whelan J.T., Hollis S.E., Cha D.S., Asch A.S., Lee M.H. 2012. Post‐transcriptional regulation of the Ras‐ERK/MAPK signaling pathway. J. Cell Physiol., 227: 1235-1241. https://doi.org/10.1002/jcp.22899 es_ES
dc.description.references Xia H., Ooi L.L.P.J., Hui K.M. 2013. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology, 58: 629-641. https://doi.org/10.1002/hep.26369 es_ES
dc.description.references Yang A., Schweitzer R., Sun D., Kaghad M., Walker N., Bronson R.T., Tabin C., Sharpe A., Caput D., Crum C. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398: 714-718. https://doi.org/10.1038/19539 es_ES
dc.description.references Yu J., Peng H., Ruan Q., Fatima A., Getsios S., Lavker R.M. 2010. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 24: 3950-3959. https://doi.org/10.1096/fj.10-157404 es_ES
dc.description.references Yu J., Ryan D.G., Getsios S., Oliveira-Fernandes M., Fatima A., Lavker R.M. 2008. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. In Proc.: National Academy of Sciences 105: 19300-19305. https://doi.org/10.1073/pnas.0803992105 es_ES
dc.description.references Zhang L., Nie Q., Su Y., Xie X., Luo W., Jia X., Zhang X. 2013. MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene, 519: 77-81. https://doi.org/10.1016/j.gene.2013.01.043 es_ES
dc.description.references Zhao Y., Wang P., Meng J., Ji Y., Xu D., Chen T., Fan R., Yu X., Yao J., Dong C. 2015. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a. Int. J. Mol. Sci., 16: 10921-10933. https://doi.org/10.3390/ijms160510921 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem